
APPLICATION NOTE

Nordic Semiconductor ASA - Vestre Rosten 81, N-7075 Tiller, Norway - Phone +47 72 89 89 00 - Fax +47 72 89 89 89
Revision: 1.0 Page 1 of 22 October 2004

Frequency Agility Protocol for
nRF24XX

nAN24-07

1. General
This application note describes the low-level Frequency Agility Protocol for nRF24XX. This
is a protocol that gives protection against disturbing traffic from frequency stationary systems
like WLAN and frequency hopping devices like Bluetooth.

The protocol is generic and can be used in many different systems that require resistance
against disturbance from other systems. By using this protocol, a system can operate in close
proximity with systems using different WLAN channels, 2,4GHz cordless phones, 2,4GHz
remote controls, microwave ovens, Bluetooth devices and other proprietary 2,4GHz systems.
Basing its functionality on recovery by retransmission of lost packets, it will be much more
reliable than a uni-directional communication protocol.

This document describes the assumptions that the protocol is based on, a description of the
functionality, implementation described with state machine diagrams, current consumption
calculations and C-code examples.

A 2.4GHz-mouse/keyboard application is a typical 2.4GHz application that will be used in
proximity with WLAN and Bluetooth nodes. This document will for that reason use the
wireless mouse/keyboard application when describing the Frequency Agility Protocol for
nRF24XX.

U
S

B

M
C

U

n
R

F

2401

nRF

24E1

Optic
al

Senso
r

nRF
24E1

U
S

B

Figure 1: Wireless 2.4GHz mouse/keyboard application

As seen in Figure 1, a wireless 2.4GHz mouse/keyboard application consists of a wireless
mouse, a wireless keyboard and a receiver unit for the PC side, referred to as a “dongle” in the
rest of this document.

APPLICATION NOTE

Frequency Agility Protocol for nRF24XX

Nordic Semiconductor ASA - Vestre Rosten 81, N-7075 Tiller, Norway - Phone +47 72 89 89 00 - Fax +47 72 89 89 89
Revision: 1.0 Page 2 of 22 October 2004

2. Assumptions

The frequency agility protocol is built on a series of assumptions regarding mouse / keyboard
applications and the traffic in the 2.4GHz band.

The traffic in the 2.4GHz band is mainly consistent of frequency stationary systems like
WLAN and frequency-hopping systems like Bluetooth. While frequency stationary systems
operate in a specific part of the band, frequency-hopping systems will generate traffic in the
whole band. All traffic generated by systems operating in the 2.4GHz band is packet based.

At a given channel in the 2.4GHz band, if a frequency hopping system is present, the
likelihood of a collision with traffic from that system is the same in every channel. It is
therefore no use in changing the operating channel if disturbed by a frequency hopping
system. If the disturbance comes from a frequency stationary system, it is possible to move in
such manner that the likelihood for a collision with the same system on the new channel is
minimal.

A mouse will require a much higher update rate than a keyboard. It is assumed that when a
mouse is used, it should be updated every 8th millisecond. The mouse will therefore have
priority in front of the keyboard regarding updates.

The disturbance from other systems will be strongest close to the PC, and the dongle attached
to the PC will suffer the most.

3. Frequency agility protocol for a 2.4GHz mouse/keyboard application

Based on the previous assumptions the definition of the frequency agility protocol emerges:
 “A protocol that will move own traffic to another channel in the 2.4GHz band if a stationary
disturbance occurs at the currently used frequency.”

 The main functionality of the frequency agility protocol will be to:
• Detect stationary disturbance.
• Move in such manner that new disturbance from the same source will not occur.
• Do not move if disturbed by a frequency hopping source.
• Give priority to mouse traffic.

It is important to notice that this protocol will only force a change in operating frequency
when a stationary disturbance occurs. After it has changed the operating frequency, it will be
on the new channel for a relative long time.

The frequency agility protocol functionality is based on the communication between the
mouse and the dongle. When the mouse is in use, it will send a packet to the dongle every 8th

millisecond and wait for acknowledge. The mouse will re-send a packet up to two times if no
acknowledgement has been received. Bluetooth will stay up to 650 microseconds on one
channel before hopping. This means that if a Bluetooth system is knocking out the mouse’s
first attempt to send a packet, the next two should get trough since each packet –

APPLICATION NOTE

Frequency Agility Protocol for nRF24XX

Nordic Semiconductor ASA - Vestre Rosten 81, N-7075 Tiller, Norway - Phone +47 72 89 89 00 - Fax +47 72 89 89 89
Revision: 1.0 Page 3 of 22 October 2004

acknowledgement cycle takes about one millisecond. It is therefore not likely that a frequency
hopping system will cause a change in frequency.

If all three attempts to send a packet fail, the mouse and dongle will change channel according
to a table. The table is built up to take care of the functionality that avoids disturbance from
the same source at the new channel. Figure 2 shows a typical table with channels used by the
frequency agility protocol. The table is “WLAN weighted,” meaning it will find the next
channel outside of the assumed WLAN channel that is disturbing the currently used channel.

Index Channel Frequency [MHz]
0 2 2402
1 32 2432
2 70 2470
3 5 2405
4 35 2435
5 68 2468
6 8 2408
7 39 2439
8 65 2465
9 11 2411

10 41 2441
11 62 2462

Figure 2: Example of a WLAN weighted channel table

As seen from the Figure 3, the WLAN traffic can be found in three sub-bands in the 2.4GHz
band. Looking at Figure 2 and Figure 3 we’ll see that the table in Figure 2 will take care of
moving the traffic out of a disturbing WLAN channel.

2.480

f (GHz)2.405

2.400

2.415

2.410

2.425

2.420

2.435

2.430

2.445

2.440

2.455

2.450

2.465

2.460

2.475

2.470

WLAN WLAN WLAN

Figure 3: WLAN channels in the 2.4GHz band

If a channel is found to be very noisy, it is desired not to use that channel again. A timing of
how long a channel has been used before disturbance occurs will tell how noisy the channel
is. Channels that are found to be too noisy can be masked out for a period of time. Masked out
channels will not be used for a while.

kf21
线条工具

kf21
线条工具

kf21
线条工具

本页已使用福昕阅读器进行编辑。福昕软件(C)2005-2007，版权所有，仅供试用。ഀ

kf21
附注工具
在出现干扰之前该频道使用时间的长短决定了该频道的噪声大小

APPLICATION NOTE

Frequency Agility Protocol for nRF24XX

Nordic Semiconductor ASA - Vestre Rosten 81, N-7075 Tiller, Norway - Phone +47 72 89 89 00 - Fax +47 72 89 89 89
Revision: 1.0 Page 4 of 22 October 2004

4. Implementation

This chapter will give a state machine description of the frequency agility protocol for a
mouse and a keyboard communicating with a dongle at the PC side of the link.

4.1. The mouse implementation

Figure 4 shows the complete state machine of the frequency agility protocol running in the
mouse. The following text will explain the different states.

Idle,
No

movement
No RF

Idle,
In use

RF updating

Movement or
button event

Send "Go to
sleep" packet

to dongle

Timeout -
No user events

Send Packet
to Dongle

Every 8th ms

Wait for ACK

Re-send
Packet.
RSC++

Timeout
And

RSC<2

ACK received

Change
frequency

Timeout
And

RSC==2

Wait for
dongle to
time out

Update and
check

channel loop
counter

Dongle still present

Dongle out of range

Wait for
ACK...

Figure 4: State machine diagram of the protocol on the mouse side

Idle, No movement, No RF is the state where the user does not use the mouse. This is the
state where the mouse spends most of its time. In this state, the mouse will only poll for
movement. There is no RF communication going on here.

As soon as a user event occurs, the mouse will go into the Idle, In Use, RF updating state. In
this state, the mouse will send a packet to the dongle by entering the Send Packet to Dongle
state every 8th millisecond. The packets are sent with a fixed interval even if no new user data
is present.

After finishing sending the packet, the mouse moves to the state Wait for ACK
(acknowledgement.) Normally an acknowledgement will be received from the dongle and the
mouse returns to the Idle, In Use, RF updating state. This loop is the normal communication
loop.

APPLICATION NOTE

Frequency Agility Protocol for nRF24XX

Nordic Semiconductor ASA - Vestre Rosten 81, N-7075 Tiller, Norway - Phone +47 72 89 89 00 - Fax +47 72 89 89 89
Revision: 1.0 Page 5 of 22 October 2004

Sometimes, if a packet from the mouse to the dongle gets lost, or an acknowledgement from
the dongle to the mouse fails to be received, a timeout must occur in the Wait for ACK state.
Which state to enter next will then depend on the “Re-Send Counter” (RSC.) If it is less than
two for the current packet, the packet is re-sent by entering the Re-send Packet state. If the
RSC equals two, the mouse enters the Change Frequency state.

In the Change Frequency state it will perform a table look up to find the next channel to use.
It will also mask out a channel that is very noisy, preventing use of this channel in close
future. A background timer telling how long the current channel has been used will give input
to the masking process. If a channel has been used for less than 20ms before a new frequency
change is initiated, it should be masked out. The masked out channels should be reset after a
given time period.

After changing frequency, the mouse enters the Wait for dongle to time out state. Since the
dongle might has received the packets from the mouse, and it is the acknowledgements that
have been lost that is the reason for the frequency change, the mouse must wait for the dongle
to time out.

Then the mouse will enter the Update and check channel loop counter state where it
updates and check its channel loop counter to determine if the dongle is still present or not.
This decision is made from checking how many times the mouse has looped trough the
channel table without contact with the dongle. If the decision is that the dongle is still present,
the mouse returns to the Send Packet to Dongle state, if not it returns to the Idle, No
movement, No RF state.

In the Idle, In Use, RF updating state the mouse will time out if no user evens has not
occurred in a while. The mouse will then send a “I’m going to sleep” packet to the dongle by
entering the Send “Go to sleep” packet to dongle state. After receiving acknowledgement
from the dongle, the mouse enters the low power state; Idle, No movement, No RF.

APPLICATION NOTE

Frequency Agility Protocol for nRF24XX

Nordic Semiconductor ASA - Vestre Rosten 81, N-7075 Tiller, Norway - Phone +47 72 89 89 00 - Fax +47 72 89 89 89
Revision: 1.0 Page 6 of 22 October 2004

4.2. The keyboard implementation

Figure 5 shows the complete state machine of the frequency agility protocol running in the
keyboard. The following text will explain the different states.

Idle,
No RF

Key Pressed

Send Packet
to Dongle

Wait for ACK

Re-send
Packet.
RSC++

Timeout
And

RSC<2

ACK received

Change
frequency

Timeout
And

RSC==2

Update and
check

channel loop
counter

Dongle still present

Dongle out of range

Figure 5: State machine diagram of the protocol on the keyboard side

The Idle, No RF state is the state where the keyboard is most of its time. In this state it does
not perform any RF communications. Only when a key press occurs, the keyboard enters the
Send Packet to dongle state.

As for the mouse, it will right after sending the packet, enter the state Wait for ACK, where it
waits for an acknowledgement to arrive. Normally it will be received, and the keyboard will
return to the Idle, No RF state.

If no acknowledgement is received, the keyboard will perform the same re-send behavior as
the mouse. If acknowledgement still doesn’t arrive, the keyboard will change frequency in
the Change Frequency state.

The keyboard will use a channel table like the mouse, but it will not perform any masking of
channels. After changing frequency, the keyboard will also determine if the dongle is present
or not in the Update and check channel loop counter state. If the dongle is still present, it
will return to the Send Packet to dongle state where it will try to send the packet to the
dongle at the new channel. If the dongle is not present, it will go to the Idle, No RF state.

APPLICATION NOTE

Frequency Agility Protocol for nRF24XX

Nordic Semiconductor ASA - Vestre Rosten 81, N-7075 Tiller, Norway - Phone +47 72 89 89 00 - Fax +47 72 89 89 89
Revision: 1.0 Page 7 of 22 October 2004

As seen here, the keyboard will follow the mouse and the dongle in frequency. The dongle or
the mouse will not tell the keyboard that a channel change has taken place. The keyboard will
therefore have to run trough its channel table until it finds the dongle, if the mouse and dongle
have moved. Since this is a relative rare event, it will not cause any problems for the keyboard
user. The benefit is that the keyboard does not need to receive messages from the dongle
when it rests in the idle state, and will therefore use minimum of current.

4.3. The dongle implementation

Figure 6 shows the complete state machine of the frequency agility protocol running in the
keyboard. The following text will explain the different states.

Idle

Send ACK to
mouse.

Send ACK to
keyboard

Mouse Packet
Received

Keyboard Packet
Received

Check if
mouse

is going to
sleep

Go to next
channel

Timeout.
Dongle has not received a
packet from the mouse in 8

ms

Check if
channel

change is
allowed

Yes

No

Figure 6: State machine diagram of the protocol on the dongle side

The dongle uses the DuoCeiver functionality and is able to receive from two different
channels simultaneously, one for the mouse and one for the keyboard.

In the Idle state it checks for received packets from the mouse and the keyboard. If two arrive
at the same time, it will give priority to the mouse since the mouse requires the highest update
rate.

APPLICATION NOTE

Frequency Agility Protocol for nRF24XX

Nordic Semiconductor ASA - Vestre Rosten 81, N-7075 Tiller, Norway - Phone +47 72 89 89 00 - Fax +47 72 89 89 89
Revision: 1.0 Page 8 of 22 October 2004

If a packet from the mouse is received, it will enter the Check if mouse is going to sleep state
and set a flag if the mouse is going to sleep and clear the flag if it is an ordinary packet from
the mouse. It will then acknowledge the received packet by entering the Send ACK to mouse
state and finally return to the Idle state.

If a packet is received from the keyboard, the dongle will acknowledge it by entering the
Send ACK to keyboard state and then return to the Idle state.

If eight milliseconds elapse without receiving any packets from the mouse, the dongle will
enter the Check if channel change is allowed state. If the mouse sleeps, the dongle is not
allowed to change channel. Also, if the dongle has not had communication with the mouse on
the current channel, it is not allowed to change channel. This is done to avoid a “runaway
dongle.“

If the dongle is allowed to change channel it will enter the Go to next channel state, if not it
will return to the Idle state. In the Go to next channel state, the dongle will do the same
exercise as the mouse regarding masking of channels. After an eventual masking the dongle
will change its operating channel and return to the Idle state.

5. Proof of concept

A demonstration of this frequency agility protocol exists. Nordic Semiconductor has
developed the “nRF24XX Bi-directional mouse/keyboard demo” that runs the frequency
agility protocol. This demo can be used to evaluate the protocol running on the nRF24E1 in
environment where WLAN and other 2.4GHz systems are operating.

The dongle that comes with the “nRF24XX Bi-directional mouse/keyboard demo” can be
plugged directly into a USB port. The dongle has a form factor that is very close to a real
mouse/keyboard application dongle.

The two PS/2 reader boards that comes with the “nRF24XX Bi-directional mouse/keyboard
demo” can be connected to a PS/2 mouse or a PS/2 keyboard and then emulate the
functionality of a wireless mouse and a wireless keyboard. Both PS/2 readers can be used
simultaneously, emulating a real wireless desktop solution.

Since the PS/2 reader board is not a real mouse or a keyboard, it has some limitations. The
user should beware that the “nRF24XX Bi-directional mouse/keyboard demo” does not
include the sleep mode for the mouse. Some of the timing constants used by the demo might
also differ from optimal timing constants in a real mouse/keyboard application.

APPLICATION NOTE

Frequency Agility Protocol for nRF24XX

Nordic Semiconductor ASA - Vestre Rosten 81, N-7075 Tiller, Norway - Phone +47 72 89 89 00 - Fax +47 72 89 89 89
Revision: 1.0 Page 9 of 22 October 2004

6. Current consumption

The mouse and the keyboard will have to turn on their receiver while waiting for an
acknowledgement to arrive from the dongle. That is the reason why the mouse and the
keyboard will use more current in a bi-directional solution compared to a uni-directional
solution. In this chapter we’ll have a closer look at the current consumption for both the
mouse and the keyboard.

6.1. The mouse current consumption

The calculations shown in Figure 7 give an average current consumption for the RF
communication when the mouse is used.

Packet Length from Mouse to PC Pl 80 bits
8bit preamble, 32 bit address, 24bit X,Y and Z
movement, 8 bit buttons, 8 bit CRC

Packet length from PC to Mouse AckL 56 bits
8bit preamble, 32 bit address, 8 bit ACK info,
8 bit CRC

Data rate DR 1 Mbit/s
nRF24E1 TX current consumption Itx 13 mA
nRF24E1 RX currnet consumption Irx 19 mA
Mouse Update Rate Tur 8 ms
Time in TX mode Ttxm 282 us
Time in RX mode Trxm 300 us Long enough to catch a packet, with margins

An ACK packet is 56 bits long (56us.) RX
startup time is 202us.
This gives 42us spare time to margins

Average current consumption in TX only IavgTX 0,46 mA
This is the average current consumption when
the mouse is actually used

Average current consumption in RX only IavgRX 0,71 mA
This is the average current consumption when
the mouse is actually used

Average current consumption, Two way solution IavgTW 1,17 mA
This is the average current consumption when
the mouse is actually used

Figure 7: Calculation of the average current consumption when the mouse is used

As seen in Figure 7 the average current consumption for the mouse in use is 1.17mA. The
calculation assumes a update rate of one packet every 8th millisecond. In a real mouse
application, this will be the current consumption used by the nRF part when the mouse is
updating the dongle. The actual average current consumption will depend on how often the
mouse is used.

APPLICATION NOTE

Frequency Agility Protocol for nRF24XX

Nordic Semiconductor ASA - Vestre Rosten 81, N-7075 Tiller, Norway - Phone +47 72 89 89 00 - Fax +47 72 89 89 89
Revision: 1.0 Page 10 of 22 October 2004

6.2. The keyboard current consumption

Since the keyboard does not use the nRF device unless a key is pressed, the average current
consumption will depend on how often a key is pressed. The calculation in Figure 8 shows the
total energy used by the nRF device to send a keyboard packet and receive acknowledgement
from the dongle.

Packet Length from Keyboard to PC Pl 112 bits
8bit preamble, 32 bit address, 64 bit payload,
8 bit CRC

Packet length from PC to Keyboard AckL 56 bits
8bit preamble, 32 bit address, 8 bit ACK info,
8 bit CRC

Data rate DR 1 Mbit/s
nRF24E1 TX current consumption Itx 13 mA
nRF24E1 RX currnet consumption Irx 19 mA
Time in TX mode Ttxm 314 us
Time in RX mode Trxm 300 us Long enough to catch a packet, with margins

An ACK packet is 56 bits long (56us.) RX
startup time is 202us.
This gives 42us spare time to margins

Energy consumption in TX only IavgTX 1,13E-06 mAh Energy used to send the keyboard packet
Energy consumption in RX only IavgRX 1,58E-06 mAh Energy used to receive ACK
Energy consumption, Two way solution IavgTW 2,72E-06 mAh Total energy used pr key press

Figure 8: Calculation of the energy consumption pr key press

The nRF device uses a total of 2.72 nAh of energy every time a key is pressed.

7. Code
This chapter shows code examples of the frequency agility protocol. It can be used as
reference for implementing similar functionality in a real mouse/keyboard application.
The code will only show the parts needed for the frequency agility protocol.
Higher level protocol layers must be added by the individual application engineer.

The code is written to run on the nRF24E1 8051 core.

APPLICATION NOTE

Frequency Agility Protocol for nRF24XX

Nordic Semiconductor ASA - Vestre Rosten 81, N-7075 Tiller, Norway - Phone +47 72 89 89 00 - Fax +47 72 89 89 89
Revision: 1.0 Page 11 of 22 October 2004

7.1. C-code for the mouse

unsigned char SpiReadWrite(unsigned char b)
{
 EXIF &= ~0x20; // Clear SPI interrupt
 SPI_DATA = b; // Move byte to send to SPI data register
 while((EXIF & 0x20) == 0x00) // Wait until SPI hs finished transmitting
 ;
 return SPI_DATA;
}

void TXPacket(void)
{

unsigned char b;
CE=1; // Set CE high

 for(b=0;b<BufPacket.length;b++) // Load packet into ShockBurst TX register
 {
 SpiReadWrite(BufPacket.buf[b]);
 }
 CE = 0; // Clear CE, transmission starts

Delay100us(3); // Wait 300us
}

void ChangeChannel(unsigned char channel,RXtx)
{

CE=0; // CE=0 before configuration
Delay100us(0); // Delay min 5us before...
CS = 1; // ..CS=1
LCH=channel; // Remember LastCHannel

 SpiReadWrite((channel<<1)|RXtx); // Write LSB to RF config
 CS = 0; // CS=0 to end configuration

if(RXtx) // If in RX mode...
{

Delay100us(0); // ..delay min 5us before..
CE = 1; // ..CE=1

}
}

unsigned char CheckACK(void)
{

if(DR1) // Check if data has been received
{

PID=SpiReadWrite(0); // Save received info
 NoDodge=SpiReadWrite(0); // Save received info

SpiReadWrite(0);
SpiReadWrite(0);
return 1; // Return 1 to indicate ACK received

 }
else

return 0; // Return 0 to indicate no ACK received
}

unsigned char WaitForACK(unsigned char x)
{

while((!CheckACK())&(x>0)) // Check if ACK is received
{

x--; // Decrement counter
ChangeChannel(LCH,0); // Go TX at same channel
TXPacket(); // Retransmit
ChangeChannel(LCH,1); // Go RX at same channel
Delay100us(ACKTime); // Delay, enable ACK to arrive

}
if(x>0) //

return 1; // Return 1 if ACK has been received
else

return 0; // Return 0 if ACK has not been received
}

APPLICATION NOTE

Frequency Agility Protocol for nRF24XX

Nordic Semiconductor ASA - Vestre Rosten 81, N-7075 Tiller, Norway - Phone +47 72 89 89 00 - Fax +47 72 89 89 89
Revision: 1.0 Page 12 of 22 October 2004

void ConfigRF(void)
{

unsigned char b;
CE=0;
CS = 1;

 Delay100us(0);
 for(b=0;b<rconf.n;b++)
 {
 SpiReadWrite(rconf.buf[b]);
 }
 CS = 0;
}

void TXMousePacket(unsigned char b,x,y,z)
{

unsigned char i;
if(!notsendt)
{

PWMDUTY=220;
y=~y+1; // Adjust Y coordinate
z=~z+1; // Adjust Z coordinate
PID++; // Increment PacketID counter
if((PID)>200) // reset PID at 200

PID=0;
for(i=0;i<AddressLength;i++) // Load address

BufPacket.buf[i]=RXAddress[i];
BufPacket.buf[5]=PID; // Send PID first in payload
BufPacket.buf[6]=b; // Send button bits
BufPacket.buf[7]=x; // Send X movement
BufPacket.buf[8]=y; // Send Y movement
BufPacket.buf[9]=z; // Send Z movement
BufPacket.buf[10]=0x00;// Reserved
BufPacket.length=11;
PWMDUTY=50;

}
}

void TickLimitReached(unsigned char TL)
{

unsigned char i;
CLKOUT=1; // Bring the clock low to inhibit PS/2
ChangeChannel(LCH,0); // Go TX at same channel
TXPacket(); // Send the packet
ChangeChannel(LCH,1); // Go RX at same channel
Delay100us(ACKTime); // Delay
if(!WaitForACK(2)) // Check if ACK is received
{ // No ACK received in 2 attempts

if(MaskTick<20) // Check if channel should be masked
MaskTable[DTi]=1; // Mask it.

MaskTick=0; // Clear MaskTick
i=DTi; // Remember last DTi
DTi++; // Increment DTi
if(DTi>(DodgeTableSize-1)) // Check for Wrap

DTi=0;
while(MaskTable[DTi]) // Find the next channel not masked
{

DTi++; // Incrementing DTi
if(DTi>(DodgeTableSize-1)) // Check if wrap

DTi=0;
if(DTi==i) // Check if checked before
{

for(i=0;i<DodgeTableSize;i++) // Reset mask table
MaskTable[i]=0;

break;
}

}
if(!NoDodge) //

ChangeChannel(DodgeTable[DTi],1); // Go RX at new channel
if(!speeddodge) // Relaod LittleTick..
{

LittleTick=0; // with 0 if first time changed

APPLICATION NOTE

Frequency Agility Protocol for nRF24XX

Nordic Semiconductor ASA - Vestre Rosten 81, N-7075 Tiller, Norway - Phone +47 72 89 89 00 - Fax +47 72 89 89 89
Revision: 1.0 Page 13 of 22 October 2004

speeddodge=1;
}
else
{

LittleTick=TL-2; // with TL-2 if not first time changed
}

}
else
{

speeddodge=0; // Clear flag if communication with dongle
LittleTick=TL-5; // Adjust LittleTick to avoid dongle timeout
notsendt=0; // Clear the notsend flag

}
CLKOUT=0;

}

void Timer2ISR (void) interrupt 5 using 1
{

LittleTick++; // Increment LittleTick
if(MaskTick<250) // Increment MaskTick if less than 250

MaskTick++;
 TF2 = 0; // Clear timer2 interrupt
}

APPLICATION NOTE

Frequency Agility Protocol for nRF24XX

Nordic Semiconductor ASA - Vestre Rosten 81, N-7075 Tiller, Norway - Phone +47 72 89 89 00 - Fax +47 72 89 89 89
Revision: 1.0 Page 14 of 22 October 2004

7.2. C-code for the keyboard

unsigned char SpiReadWrite(unsigned char b)
{
 EXIF &= ~0x20; // Clear SPI interrupt
 SPI_DATA = b; // Move byte to send to SPI data register
 while((EXIF & 0x20) == 0x00) // Wait until SPI hs finished transmitting
 ;
 return SPI_DATA;
}

void TXPacket(void)
{

unsigned char b;
CE=1; // Set CE high

 for(b=0;b<BufPacket.length;b++) // Load packet into ShockBurst TX register
 {
 SpiReadWrite(BufPacket.buf[b]);
 }
 CE = 0; // Clear CE, transmission starts

Delay100us(3); // Wait 300us
}

void ChangeChannel(unsigned char channel,RXtx)
{

CE=0; // CE=0 before configuration
Delay100us(0); // Delay min 5us before...
CS = 1; // ..CS=1
LCH=channel; // Remember LastCHannel

 SpiReadWrite((channel<<1)|RXtx); // Write LSB to RF config
 CS = 0; // CS=0 to end configuration

if(RXtx) // If in RX mode...
{

Delay100us(0); // ..delay min 5us before..
CE = 1; // ..CE=1

}
}

unsigned char CheckACK(void)
{

if(DR1) // Check if data has been received
{

PID=SpiReadWrite(0); // Save received info
 NoDodge=SpiReadWrite(0); // Save received info

SpiReadWrite(0);
SpiReadWrite(0);
return 1; // Return 1 to indicate ACK received

 }
else

return 0; // Return 0 to indicate no ACK received
}

unsigned char WaitForACK(unsigned char x)
{

while((!CheckACK())&(x>0)) // Check if ACK is received
{

x--; // Decrement counter
ChangeChannel(LCH,0); // Go TX at same channel
TXPacket(); // Retransmit
ChangeChannel(LCH,1); // Go RX at same channel
Delay100us(ACKTime); // Delay, enable ACK to arrive

}
if(x>0) //

return 1; // Return 1 if ACK has been received
else

return 0; // Return 0 if ACK has not been received
}

APPLICATION NOTE

Frequency Agility Protocol for nRF24XX

Nordic Semiconductor ASA - Vestre Rosten 81, N-7075 Tiller, Norway - Phone +47 72 89 89 00 - Fax +47 72 89 89 89
Revision: 1.0 Page 15 of 22 October 2004

void ConfigRF(void)
{

unsigned char b;
CE=0;
CS = 1;

 Delay100us(0);
 for(b=0;b<rconf.n;b++)
 {
 SpiReadWrite(rconf.buf[b]);
 }
 CS = 0;
}

void TXKeyPacket(unsigned char b,x)
{

unsigned char i;
CLKOUT=1; // Bring the clock low to inhibit PS/2
PWMDUTY=220; // Turn on the LED
PID++; // Increment PacketID counter
if((PID)>200) // reset PID at 200

PID=0;
for(i=0;i<AddressLength;i++)

BufPacket.buf[i]=RXAddress[i]+1;
// Address bytes on keyboard is incremented with 1.

BufPacket.buf[5]=PID; // First byte in payload is PID
BufPacket.buf[6]=b; // Flags for special keys
BufPacket.buf[7]=x; // Key scan code
BufPacket.buf[8]=0x00; // Reserved
BufPacket.buf[9]=0x00; // Reserved
BufPacket.buf[10]=0x00;// Reserved
BufPacket.length=11; // Set packet length

ChangeChannel(LCH,0); // Go TX at same channel
TXPacket(); // Send packet
ChangeChannel(LCH,1); // Go RX at same channel
Delay100us(ACKTime); // Delay
while(!WaitForACK(2)) // Check if ACK is received
{ // Change channel if not

DTi++;
if(DTi>(DodgeTableSize-1))

DTi=0;
ChangeChannel(DodgeTable[DTi]+8,1); // Go RX at new channel

}
PWMDUTY=50; // Turn off the LED
CLKOUT=0; // Release clock to enable PS/2

}

APPLICATION NOTE

Frequency Agility Protocol for nRF24XX

Nordic Semiconductor ASA - Vestre Rosten 81, N-7075 Tiller, Norway - Phone +47 72 89 89 00 - Fax +47 72 89 89 89
Revision: 1.0 Page 16 of 22 October 2004

7.3. C-code for the dongle

#include <Nordic VLSI\reg24e1.h>

struct RFConfig
{
 unsigned char n;
 unsigned char buf[15];
};

struct Packet
{

unsigned char length;
unsigned char buf[20];

};

typedef struct RFConfig RFConfig;
typedef struct Packet Packet;

#define ADDR_INDEX 7 // Index to address bytes in RFConfig.buf
#define ADDR_COUNT 5 // Number of address bytes
#define DodgeTableSize 9 // Dodge table size
#define AddressLength 5
#define tickperiod 1 // in ms
#define timervalue (65536-16000000/(4*(1000/tickperiod))) // Calculate timer value

const unsigned char RXAddress[] = {0xED, 0xBA, 0x7E, 0xDF, 0xDD};
const unsigned char DodgeTable[] = {2,27,52,8,33,58,14,39,64};
unsigned char MaskTable[] = {0,0 ,0 ,0,0 ,0 ,0 ,0 ,0};

const RFConfig rconf = // nRF configuration word
{
 15,
 0x30, 0x30, 0xEE, 0xBB, 0x7F, 0xE0, 0xDE, 0xED,
 0xBA, 0x7E, 0xDF, 0xDD, 0xA1, 0xEF, 0x46
};

unsigned char LCH,PID=0,NoDodge=0,DTi=0,LittleTick=0,MaskTick=0;
volatile unsigned char flag=0;

Packet BufPacket;
Packet OutPack;

void convoy(unsigned char type);

void Delay100us(volatile unsigned char n)
{
 unsigned char i;
 while(n--)
 for(i=0;i<32;i++)
 ;
}

unsigned char SpiReadWrite(unsigned char b)
{
 EXIF &= ~0x20; // Clear SPI interrupt
 SPI_DATA = b; // Move byte to send to SPI data register
 while((EXIF & 0x20) == 0x00) // Wait until SPI hs finished transmitting
 ;
 return SPI_DATA;
}

void ChangeChannel(unsigned char channel,RXtx)
{

CE=0; // CE=0 before configuration
Delay100us(0); // Delay min 5us before...
CS = 1; // ..CS=1
LCH=channel; // Remember LastCHannel

APPLICATION NOTE

Frequency Agility Protocol for nRF24XX

Nordic Semiconductor ASA - Vestre Rosten 81, N-7075 Tiller, Norway - Phone +47 72 89 89 00 - Fax +47 72 89 89 89
Revision: 1.0 Page 17 of 22 October 2004

SPI_CTRL = 0x02; // Connect SPI to RADIO CH1
 SpiReadWrite((channel<<1)|RXtx); // Write LSB to RF config
 CS = 0; // CS=0 to end configuration

if(RXtx) // If in RX mode...
{

Delay100us(0); // ..delay min 5us before..
CE = 1; // ..CE=1

}
}
void ConfigRF(void)
{

unsigned char b;
CE=0; // Set CE low
Delay100us(0); // Short delay
CS = 1; // Set CS high
SPI_CTRL = 0x02; // Connect SPI to RADIO CH1

 for(b=0;b<rconf.n;b++) // Clock out all configuration data
 {
 SpiReadWrite(rconf.buf[b]);
 }
 CS = 0; // Clear CS -> End configuration
}

unsigned char ReceiveMouse(void)
{

if(DR1) // Check if DR1 is high
{

SPI_CTRL = 0x02; // Connect SPI to RADIO CH1
BufPacket.length=0; // Clear Buffer packet length
while(DR1) // Clock out all received data
{

 BufPacket.buf[BufPacket.length++]=SpiReadWrite(0);
}
return 1; // Return 1 to indicate reception

 }
else

return 0; // Return 1 to indicate no reception
}

unsigned char ReceiveKeyboard(void)
{

if(DR2) // Check if DR2 is high
{
 SPI_CTRL = 0x03; // Connect SPI to RADIO CH2

BufPacket.length=0; // Clear Buffer packet length
while(DR2) // Clock out all received data
{

 BufPacket.buf[BufPacket.length++]=SpiReadWrite(0);
}
return 1; // Return 1 to indicate reception

 }
else

return 0; // Return 1 to indicate no reception

}

void TXPacket(void)
{

unsigned char b;
CE=1; // Set CE high
SPI_CTRL = 0x02; // Connect SPI to RADIO CH1

 for(b=0;b<BufPacket.length;b++) // Clock out the packet
 {
 SpiReadWrite(BufPacket.buf[b]);
 }
 CE = 0; // Set CE low (TX starts)

Delay100us(3); // Wait 300us
}

void Timer2ISR (void) interrupt 5 using 1
{

LittleTick++; // Increment LittleTick every ms
if(MaskTick<250)

MaskTick++; // Increment MaskTick every ms until 250

APPLICATION NOTE

Frequency Agility Protocol for nRF24XX

Nordic Semiconductor ASA - Vestre Rosten 81, N-7075 Tiller, Norway - Phone +47 72 89 89 00 - Fax +47 72 89 89 89
Revision: 1.0 Page 18 of 22 October 2004

 TF2 = 0; // Clear timer2 interrupt
}

void Init(void)
{
 // I/O
 P0_DIR = 0x02; // P0.1 is input, rest are output

P1_DIR = 0x00;
P1 = 0x00;

 // SPI:
 SPICLK = 0x00; // Max SPICLK (=CLK/8)
 SPI_CTRL = 0x02; // Connect SPI to RADIO CH1

 // Radio
 PWR_UP = 1; // Turn on Radio
 Delay100us(30); // Wait > 3ms

ConfigRF();

 // TIMER2:
 TR2 = 0; // Stop timer2 if running
 CKCON |= 0x20; // T2M=1 (/4 timer clock)

 RCAP2L = timervalue; //
 RCAP2H = timervalue>>8; //

 TF2 = 0; // Clear any pending timer2 interrupts
 TR2 = 1; // Start timer2
 ET2 = 1; // Enable timer2 interrupts

 // System
 EA = 1; // Enable global interrupts
}

void BuildACK(unsigned char CCC)
{

unsigned char i;
BufPacket.buf[5]=BufPacket.buf[0]; // Return the PID to the device
for(i=0;i<AddressLength;i++) // Build address

BufPacket.buf[i]=RXAddress[i];
BufPacket.buf[6]=CCC; // Add user byte
BufPacket.buf[7]=0; // Future use
BufPacket.buf[8]=0; // Future use
BufPacket.length=9; // Set the packet length

}

void main(void)
{

unsigned char OldKeyboardPacketID,OldMousePacketID;
unsigned char MouseSleeps=0,hasmoved=1,i,n;
Init();
ChangeChannel(DodgeTable[DTi],1); // Go RX at first channel in the DodgeTable
while(1)
{

if(ReceiveMouse()) // Check if data from the mouse has arrived
 {

if(OldMousePacketID != BufPacket.buf[0])// Check if it is a new packet
(not a re-sent one.)

{
OldMousePacketID=BufPacket.buf[0];// Save the new packet ID
for(i=0;i<BufPacket.length;i++)
// Transfer received data to the USB out buffer

OutPack.buf[i]=BufPacket.buf[i];
flag=0x01; // Flag that new mouse data are present

// A check of if the mouse is going to sleep
// must be done here to set the MouseSleep flag
// The MouseSleep flag is cleard if a new packet
// is received from the mouse.

}
LittleTick=0; // Clear the tick counter

APPLICATION NOTE

Frequency Agility Protocol for nRF24XX

Nordic Semiconductor ASA - Vestre Rosten 81, N-7075 Tiller, Norway - Phone +47 72 89 89 00 - Fax +47 72 89 89 89
Revision: 1.0 Page 19 of 22 October 2004

hasmoved=0;// Clear the "hasmoved" flag -> allow dongle to move in freq
ChangeChannel(LCH,0); // Go TX at same channel
BuildACK(NoDodge); // Build the acknowledgement
TXPacket(); // Send the acknowledgement to the mouse
ChangeChannel(LCH,1); // Go RX at same channel

}
else

if(ReceiveKeyboard()) // Check if data from the keyboard has arrived
 {

if(OldKeyboardPacketID != (BufPacket.buf[0]))// Check if it is a
new packet (not a re-sent one.)

{
OldKeyboardPacketID=(BufPacket.buf[0]);// Save the new

packet ID
for(i=0;i<BufPacket.length;i++)// Transfer received data

to the USB out buffer
OutPack.buf[i]=BufPacket.buf[i];

flag=0x05;// Flag that new keyboard data are present
}
ChangeChannel(LCH+8,0);// Go TX at keyboard channel (8MHz up)
BuildACK(NoDodge); // Build the acknowledgement
TXPacket(); // Send the acknowledgement to the

keyboard
ChangeChannel(LCH-8,1);// Go RX at operating channel (8MHz down)

}

if((LittleTick>8)&(!hasmoved)&(!MouseSleeps))// Timeout?
{

// If it hasn't moved since last time a mouse packet arrived

// and the mouse doesn't sleep...
LittleTick=0; // Clear the tick counter
hasmoved=1; // Set the "hasmoved" flag
if(MaskTick<50)// Check if it is reason to mask the old channel

MaskTable[DTi]=1;
MaskTick=0; // Reset the MaskTick counter
n=DTi; // Remember old DTi
DTi++; // Increment DodgeTable index
while(MaskTable[DTi]) // Find an unmasked channel
{

DTi++;
if(DTi>(DodgeTableSize-1))

DTi=0;
if(n==DTi)
{

NoDodge=1;// If all channels are masked, stop dodging
break;

}
}
if(DTi>(DodgeTableSize-1))// Check for wrap

DTi=0;
ChangeChannel(DodgeTable[DTi],1);// Go RX at new channel

}
convoy(flag); // Send flags to USB convoy routine (the next layer.)
flag=0; // Clear flags

}
}

APPLICATION NOTE

Frequency Agility Protocol for nRF24XX

Nordic Semiconductor ASA - Vestre Rosten 81, N-7075 Tiller, Norway - Phone +47 72 89 89 00 - Fax +47 72 89 89 89
Revision: 1.0 Page 20 of 22 October 2004

1. LIABILITY DISCLAIMER
Nordic Semiconductor ASA reserves the right to make changes without further notice to the
product to improve reliability, function or design. Nordic Semiconductor does not assume any
liability arising out of the application or use of any product or circuits described herein.

LIFE SUPPORT APPLICATIONS
These products are not designed for use in life support appliances, devices, or systems where
malfunction of these products can reasonably be expected to result in personal injury. Nordic
Semiconductor ASA customers using or selling these products for use in such applications do
so at their own risk and agree to fully indemnify Nordic Semiconductor ASA for any damages
resulting from such improper use or sale.

Application Note, Revision: 1.0, Date: 12.10.2004.

Application Note order code: nAN24-07

All rights reserved ®. Reproduction in whole or in part is prohibited without the prior written
permission of the copyright holder.

APPLICATION NOTE

Frequency Agility Protocol for nRF24XX

Nordic Semiconductor ASA - Vestre Rosten 81, N-7075 Tiller, Norway - Phone +47 72 89 89 00 - Fax +47 72 89 89 89
Revision: 1.0 Page 21 of 22 October 2004

YOUR NOTES

APPLICATION NOTE

Frequency Agility Protocol for nRF24XX

Nordic Semiconductor ASA - Vestre Rosten 81, N-7075 Tiller, Norway - Phone +47 72 89 89 00 - Fax +47 72 89 89 89
Revision: 1.0 Page 22 of 22 October 2004

Nordic Semiconductor - World Wide Distributors

For Your nearest dealer, please see http://www.nordicsemi.no

Main Office:
Vestre Rosten 81, N-7075 Tiller, Norway

Phone: +47 72 89 89 00, Fax: +47 72 89 89 89

Visit the Nordic Semiconductor ASA website at http://www.nordicsemi.no

