Datasheet for Telink ULP 2.4GHz RF SoC TLSR8359

DS-TLSR8359-E5

Ver 0.8.4

2019/7/11

Keyword:

2.4GHz; Features; Package; Pin layout; Memory; MCU; Working modes; Wakeup sources; RF Transceiver; Clock; Timers; Interrupt; Interface; PWM; QDEC; ADC; PGA; Temperature sensor; Low power comparator; AES; Electrical specification

Brief:

This datasheet is dedicated for Telink ULP (Ultra-low Power) 2.4GHz RF SoC TLSR8359 (VID: 0x02). In this datasheet, key features, working mode, main modules, electrical specification and application of the TLSR8359 are introduced.

TELINK SEMICONDUCTOR

Published by Telink Semiconductor

Bldg 3, 1500 Zuchongzhi Rd, Zhangjiang Hi-Tech Park, Shanghai, China

© Telink Semiconductor All Right Reserved

Legal Disclaimer

This document is provided as-is. Telink Semiconductor reserves the right to make improvements without further notice to this document or any products herein. This document may contain technical inaccuracies or typographical errors. Telink Semiconductor disclaims any and all liability for any errors, inaccuracies or incompleteness contained herein.

Copyright (c) 2019 Telink Semiconductor (Shanghai) Ltd, Co.

Information:

For further information on the technology, product and business term, please contact Telink Semiconductor Company (<u>www.telink-semi.com</u>).

For sales or technical support, please send email to the address of:

telinkcnsales@telink-semi.com

telinkcnsupport@telink-semi.com

Revision History

Version	Major Changes	Date	Author
0.8.0	Preliminary release	2018/8	YCQ, LY, JJW, SY, TJB, LX, LWT, HZT, CJH, Cynthia
0.8.1	Updated section 1.2.2 RF Features, 1.2.3 Features of power management module, 2.1.2 Flash, 2.1.3 E-Fuse, 2.6.1 Power-On-Reset (POR) and Brown- out detect, 15.3 DC characteristics, and 15.4 AC characteristics. Added 15.5 SPI characteristics, and 15.6 I2C characteristics	2018/10	SY, TJB, Cynthia
0.8.2	Updated section 1.3 Typical applications, 1.4 Ordering information, 7.3.4 I2C Master mode, 15.1 Absolute maximum ratings, 15.2 Recommended operating condition, 16 Reference Design. Added section 15.7 Flash characteristics.	2018/12	SY, CJH, LY, YY, YCQ, HZF, LWT, Cynthia
0.8.3	Updated the sections below: 1.1 Block diagram, 1.2 Key features, 1.4 Ordering information, 1.6 Pin layout, 2.1 Memory, 2.4 Working modes, 2.5 Reset, 2.6.1 Power-On-Reset (POR) and Brown- out detect, 4.2 System clock, 4.4 Register table, 7.1 GPIO, 9.1 Input pin selection, 10 SAR ADC, 12 Temperature Sensor, 15.4 AC characteristics, 16 Reference Design.	2019/5	SGJ, SY, JJW, LY, XJ, LX, LWT, YCQ, Cynthia

Version	Major Changes	Date	Author
	Added section 2.6.4 VBAT and VANT power-supply mode.		
0.8.4	Updated the sections below: 1.6 Pin layout, 2.1.3 E-Fuse, 5.1.1 Register table, 8.1 Register table, 9.4 QDEC reset, 9.7 Register table, 10.3.2 "Set" state, 14.4 Register table	2019/6	JJW, SY, HZT, YCQ, Cynthia

1 Table of contents

1	Over	rview	10
	1.1	Block diagram	10
	1.2	Key features	11
	1.2.1	1 General features	11
	1.2.2	2 RF Features	12
	1.2.3	3 Features of power management module	12
	1.2.4	4 USB features	13
	1.2.5	5 Flash features	13
	1.3	Typical applications	13
	1.4	Ordering information	14
	1.5	Package	15
	1.6	Pin layout	18
	1.6.1	1 Pin layout for TLSR8359ET48	18
	1.6.2	2 Pin layout for TLSR8359F512ET32	21
	1.6.3	3 Pin layout for TLSR8359F64ES16	23
	1.6.4	4 Notes	24
2	Men	nory and MCU	26
	2.1	Memory	26
	2.1.1	1 SRAM/Register	26
	2.1.2	2 Flash	28
	2.1.3	3 E-Fuse	28
	2.2	Firmware encryption	28
	2.3	MCU	29
	2.4	Working modes	29
	2.5 F	Reset	31
	2.6 F	Power Management	32
	2.6.1	1 Power-On-Reset (POR) and Brown-out detect	32
	2.6.2	2 Working mode switch	35
	2.6.3	3 LDO and DCDC	36
	2.6.4	4 VBAT and VANT power-supply mode	36
	2.7 \	Wakeup sources	37
	2.7.1	1 Wakeup source - USB	37
	2.7.2	2 Wakeup source – 32kHz timer	37
	2.7.3	3 Wakeup source – low power comparator	37
	2.7.4	4 Wakeup source – IO	37
	2.7.5	5 Register table	38
3	2.4G	GHz RF Transceiver	40
	3.1	Block diagram	40
	3.2	Air interface data rate and RF channel frequency	41
	3.3	Baseband	41
	3.3.1	1 Packet format	41
- -			

	3.3.2	RSSI and frequency offset	.41
4	Clock	٢	.41
Z	1.1	Clock sources	.42
Z	1.2	System clock	.43
Z	1.3	Module clock	.43
	4.3.1	System Timer clock	.43
	4.3.2	USB clock	.43
Z	1.4	Register table	.43
5	Time	rs	.45
5	5.1	Timer0~Timer2	.45
	5.1.1	Register table	.45
	5.1.2	Mode0 (System Clock Mode)	.46
	5.1.3	Mode1 (GPIO Trigger Mode)	.46
	5.1.4	Mode2 (GPIO Pulse Width Mode)	.47
	5.1.5	Mode3 (Tick Mode)	.48
	5.1.6	Watchdog	.49
5	5.2	32K LTIMER	.49
5	5.3	System Timer	.49
6	Inter	rupt System	.51
6	5.1	Interrupt structure	.51
6	5.2	Register configuration	.51
	6.2.1	Enable/Mask interrupt sources	. 52
	6.2.2	Interrupt mode and priority	.53
	6.2.3	Interrupt source flag	.53
7	Inter	face	.54
7	7.1	GPIO	.54
	7.1.1	Basic configuration	.54
	7.1	.1.1 GPIO lookup table	.54
	7.1	.1.2 Multiplexed functions	.57
	7.1	.1.3 Drive strength	.59
	7.1.2	Connection relationship between GPIO and related modules	.59
	7.1.3	Pull-up/Pull-down resistor	. 62
7	7.2	SWM and SWS	.63
7	7.3	I2C	.64
	7.3.1	Communication protocol	.64
	7.3.2	Register table	.64
	7.3.3	I2C Slave mode	. 65
	7.3	.3.1 DMA mode	.66
	7.3	.3.2 Mapping mode	.67
	7.3.4	I2C Master mode	.67
	7.3	.4.1 I2C Master Write transfer	. 68
	7.3	.4.2 I2C Master Read transfer	. 68

7.3.5 I2C and SPI Usage	68
7.4 SPI	69
7.4.1 Register table	69
7.4.2 SPI Master mode	69
7.4.3 SPI Slave mode	70
7.4.4 I2C and SPI Usage	71
7.5 UART	72
7.6 USB	74
8 PWM	76
8.1 Register table	76
8.2 Enable PWM	
8.3 Set PWM clock	
8.4 PWM waveform, polarity and output inversion	81
8.4.1 Waveform of signal frame	81
8.4.2 Invert PWM output	81
8.4.3 Polarity for signal frame	81
8.5 PWM mode	82
8.5.1 Select PWM mode	82
8.5.2 Continuous mode	82
8.5.3 Counting mode	83
8.5.4 IR mode	83
8.5.5 IR FIFO mode	84
8.5.6 IR DMA FIFO mode	85
8.6 PWM interrupt	89
9 Quadrature Decoder	90
9.1 Input pin selection	90
9.2 Common mode and double accuracy mode	90
9.3 Read real time counting value	92
9.4 QDEC reset	93
9.5 Other configuration	93
9.6 Timing sequence	94
9.7 Register table	95
10 SAR ADC	96
10.1 Power on/down	96
10.2 ADC clock	96
10.3 ADC control in auto mode	97
10.3.1 Set max state and enable channel	97
10.3.2 "Set" state	97
10.3.3 "Capture" state	98
10.3.4 Usage cases	99
10.3.4.1 Case 1: 3-channel sampling for Left, Right and Misc	99
10.3.4.2 Case 2: 2-channel sampling for Left and Misc	99

1	0.3.4.3 Case 3: 2-channel sampling for Left and Right	
1	0.3.4.4 Case 4: 1-channel sampling for Left	100
1	.0.3.4.5 Case 5: 1-channel sampling for Misc	100
1	.0.3.4.6 Case 6 with detailed register setting	100
10.4	Register table	102
11 PG/	Α	107
11.1	Power on/down	
11.2	Input channel	108
11.3	Adjust gain	108
11.4	Register table	109
12 Ter	mperature Sensor	110
13 Lov	<i>w</i> Power Comparator	112
13.1	Power on/down	112
13.2	Select input channel	112
13.3	Select mode and input channel for reference	113
13.4	Select scaling coefficient	113
13.5	Low power comparator output	113
13.6	Register table	113
14 AES	S	115
14.1	RISC mode	115
14.2	DMA mode	115
14.3	AES-CCM	115
14.4	Register table	116
15 Key	y Electrical Specifications	117
15.1	Absolute maximum ratings	117
15.2	Recommended operating condition	117
15.3	DC characteristics	118
15.4	AC characteristics	118
15.5	SPI characteristics	121
15.6	I2C characteristics	122
15.7	Flash characteristics	123
16 Ref	ference Design	124
16.1	Application example for TLSR8359ET48	124
	1.1 Schematic	
16.	1.2 BOM (Bill of Material)	125
16.2	Application example for TLSR8359F512ET32	126
16.	2.1 Schematic	126
	2.2 BOM (Bill of Material)	
16.3	Application example for TLSR8359F64ES16	128
16.	.3.1 Schematic	128
16.	3.2 BOM (Bill of Material)	129

2 Table of Figures

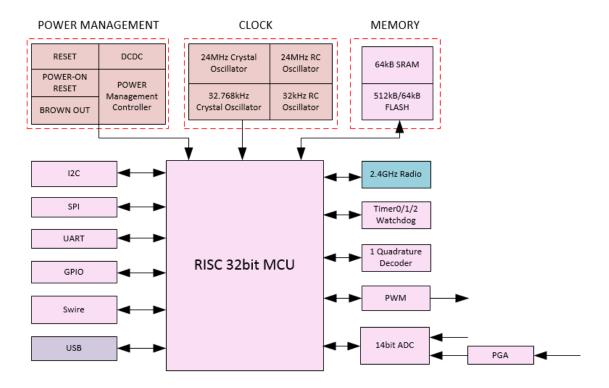
Figure 1- 1	Block diagram of the system	. 10
Figure 1-2	Package dimension for TLSR8359ET48 (Unit: mm)	. 15
Figure 1-3	Package dimension for TLSR8359F512ET32 (Unit: mm)	. 16
Figure 1-4	Package dimension for TLSR8359F64ES16 (Unit: mm)	. 17
Figure 1-5	Pin assignment for TLSR8359ET48	. 18
Figure 1-6	Pin assignment for TLSR8359F512ET32	. 21
Figure 1-7	Pin assignment for TLSR8359F64ES16	. 23
Figure 2-1	Physical memory map	. 26
Figure 2-2	Register space	
Figure 2-3	Control logic for power up/down	. 32
Figure 2-4	Initial Power-up sequence	. 33
Figure 2-5	Power-down sequence	. 34
Figure 2-6	Wakeup sources	. 37
Figure 3-1	Block diagram of RF transceiver	. 40
Figure 4-1	Block diagram of clock	. 42
Figure 7-1	Logic relationship between GPIO and related modules	. 60
Figure 7-2	I2C timing chart	. 64
Figure 7-3	Byte consisted of slave address and R/W flag bit	. 65
Figure 7-4	Read format in DMA mode	. 66
Figure 7-5	Write format in DMA mode	. 66
Figure 7-6	Read format in Mapping mode	. 67
Figure 7-7	Write format in Mapping mode	. 67
Figure 7-8	SPI write/read command format	. 71
Figure 7-9	UART communication	. 72
Figure 8-1	A signal frame	. 81
Figure 8-2	PWM output waveform chart	. 82
Figure 8-3	Continuous mode	. 82
Figure 8-4	Counting mode (n=0)	. 83
Figure 8-5	IR mode (n=0)	. 84
Figure 8-6	IR format examples	. 85
Figure 9- 1	Common mode	. 91
Figure 9- 2	Double accuracy mode	. 92
Figure 9-3	Read real time counting value	. 93
Figure 9-4	Shuttle mode	. 93
Figure 9- 5	Timing sequence chart	. 94
Figure 10- 1	Block diagram of ADC	. 96
Figure 11- 1	Block diagram of PGA	107
Figure 12- 1	Block diagram of temperature sensor	110
Figure 13- 1	Block diagram of low power comparator	112
Figure 16- 1	Schematic for TLSR8359ET48	124
Figure 16- 2	Schematic for TLSR8359F512ET32	126
Figure 16- 3	Schematic for TLSR8359F64ES16	128

3 Table of Tables

Table 1- 1	Ordering information of the TLSR8359	14
Table 1- 2	Pin functions for TLSR8359ET48	18
Table 1- 3	Pin functions for TLSR8359F512ET32	21
Table 1-4	Pin functions for TLSR8359F64ES16	23
Table 2- 1	Working modes	29
Table 2- 2	Register configuration for software reset	31
Table 2- 3	Analog register to control delay counters	32
Table 2- 4	Characteristics of Initial Power-up/ Power-down sequence	34
Table 2- 5	3.3V analog registers for module power up/down control	35
Table 2- 6	Analog registers for Wakeup	
Table 2- 7	Digital register for Wakeup	
Table 3- 1	External RF transceiver control example	40
Table 3- 2	Packet format in Proprietary mode	41
Table 4- 1	Register table related to clock	43
Table 5- 1	Register configuration for Timer0~Timer2	45
Table 5- 2	Register table for System Timer	49
Table 6- 1	Register table for Interrupt system	51
Table 7- 1	GPIO lookup table 1	54
Table 7- 2	Select multiplexed SPI/I2C	59
Table 7- 3	GPIO lookup table2	
Table 7- 4	Analog registers for pull-up/pull-down resistor control	
Table 7- 5	Register configuration for I2C	
Table 7- 6	Register configuration for SPI	
Table 7- 7	SPI Master mode	
Table 7- 8	SPI Slave mode	
Table 7- 9	Register configuration for UART	
Table 8- 1	Register table for PWM	
Table 9- 1	Input pin selection	
Table 9- 2	Timing	
Table 9- 3	Register table for QDEC	
Table 10- 1	Overall register setting	
Table 10- 2	Register setting for L/R/M channel	
Table 10- 3	Register table related to SAR ADC	
Table 11- 1	Analog register table related to PGA	
Table 11- 2	Digital register table related to PGA	
Table 12-1	Analog register for temperature sensor	
Table 13-1	Analog register table related to low power comparator	
Table 14- 1	Register table related to AES	
Table 15-1	Absolute Maximum Ratings	
Table 15- 2	Recommended operation condition	
Table 15-3	DC characteristics (VDD=3.3V, T=25 $^{\circ}$ C)	
Table 15-4	AC Characteristics (VDD=3.3V, T=25 °C)	
Table 15-5	SPI characteristics	
Table 15- 6	I2C characteristics	
Table 16- 1	BOM table for TLSR8359ET48	
Table 16- 2	BOM table for TLSR8359F512ET32	
Table 16- 3	BOM table for TLSR8359F64ES16	

1 Overview

The RoHS-compliant TLSR8359 series with internal Flash is dedicated to 2.4GHz RF System-On-Chip solution, such as Retail/Logistics, Private network, Beacon applications, and etc.


The TLSR8359 has hardware OTA upgrades support and multiple boot switching, allowing convenient product feature roll outs and upgrades.

1.1 Block diagram

The TLSR8359 is designed to offer high integration, ultra-low power application capabilities.

The TLSR8359 series integrates a power-balanced 32-bit MCU, 2.4GHz Radio, 64kB SRAM, 512kB (TLSR8359F512) / 64kB (TLSR8359F64) internal Flash, 14bit ADC with PGA, 6-channel PWM (1-channel IR/IR FIFO/IR DMA FIFO), one quadrature decoder (QDEC), abundant and flexible GPIO interfaces, and nearly all the peripherals needed for 2.4GHz RF System-On-Chip application development.

The TLSR8359 also includes multi-stage power management design allowing ultra-low power operation and making it the ideal candidate for power-constraint applications.

The system's block diagram is as shown in Figure 1-1.

Figure 1-1 Block diagram of the system

*Notes:

 Modules marked with different colors belong to different power domains. Power state of each power domain can be controlled independent of other power domains, for example, the Radio module can be independently powered on or powered down irrespective of other modules such as power management module, clock, and etc.

- 2) The 2.4GHz Radio and USB are powered down by default.
- 3) The power management module and clock should be always powered on, even in deep sleep.
- 4) In deep sleep, except for the power management and clock, all other modules should be powered down.

With the high integration level of TLSR8359, few external components are needed to satisfy customers' ultra-low cost requirements.

1.2 Key features

1.2.1 General features

General features are as follows:

- 1) 4-byte Chip UID (Unique ID).
- 2) Embedded 32-bit proprietary microcontroller.
 - ♦ Better power-balanced performance than ARM M0
 - ♦ Instruction cache controller
 - ♦ Maximum running speed up to 48MHz
- 3) Program memory:
 - ♦ Internal 512kB (TLSR8359F512)/64kB (TLSR8359F64) Flash.
 - ♦ The TLSR8359ET48 has no internal flash but supports up to 16MB external flash.
- 4) Data memory: 64kB on-chip SRAM, including up to 32kB SRAMs with retention in deep sleep, and one 32kB SRAM without retention in deep sleep.
- 5) RTC and other timers:
 - Clock source of 24MHz&32.768kHz Crystal and 32kHz/24MHz embedded RC oscillator
 - ♦ Three general 32-bit timers with four selectable modes in active mode
 - ♦ Watchdog timer
 - ♦ A low-frequency 32kHz timer available in low power mode
- 6) A rich set of I/Os:
 - ♦ Up to 32/17/2 GPIOs depending on package option. All digital IOs can be used as GPIOS.
 - ♦ SPI
 - ♦ I2C
 - ♦ UART with hardware flow control support
 - ♦ USB
 - ♦ Swire debug Interface
 - ♦ MSPI for external flash (only TLSR8359ET48)

- 7) Up to 6 channels of differential PWM:
 - ♦ PWM1~PWM5: 5-channel normal PWM output.
 - ♦ PWM0: 1 channel with five modes support, including IR/IR FIFO/IR DMA FIFO mode for IR generation.
- 8) Sensor:
 - ♦ 14bit 10-channel (only GPIO input) SAR ADC, with 4-channel differential input PGA
 - ♦ Temperature sensor
- 9) One quadrature decoder.
- 10) Embedded hardware AES and AES-CCM.
- 11) Embedded low power comparator.
- 12) Operating temperature range: -40° C ~+85 $^{\circ}$ C

1.2.2 RF Features

RF features include:

- 1) 2.4GHz RF transceiver embedded, working in worldwide 2.4GHz ISM band.
- 2) 2.4GHz proprietary 1Mbps/2Mbps/250kbps/500kbps mode with Adaptive Frequency Hopping feature support.
- 3) Rx Sensitivity: -96dBm @ 1Mbps, -93dBm @ 2Mbps
- 4) Tx output power: up to +10dBm
- 5) 50 Ω matched single-pin antenna interface.
- 6) RSSI monitoring with +/-1dB resolution.
- 7) Auto acknowledgement, retransmission and flow control.

1.2.3 Features of power management module

Features of power management module include:

- 1) Embedded LDO and DCDC.
- 2) Battery monitor: Supports low battery detection.
- 3) Power supply: 1.8V~3.6V.
- 4) Multiple stage power management to minimize power consumption.
- 5) Low power consumption:
 - ♦ Whole Chip RX mode: 5.3mA
 - ♦ Whole Chip TX mode: 4.8mA @ 0dBm with DCDC
 - ♦ Deep sleep with external wakeup (without SRAM retention): 0.4uA
 - Deep sleep with SRAM retention: 1uA (with 8kB SRAM retention), 1.2uA (with 16kB SRAM retention), 1.4uA (with 32kB SRAM retention)

1.2.4 USB features

USB features include:

- 1) Compatible with USB2.0 Full speed mode.
- 2) Supports 9 endpoints including control endpoint 0 and 8 configurable data endpoints.
- 3) Independent power domain.
- 4) Supports ISP (In-System Programming) via USB port.

1.2.5 Flash features

The TLSR8359F512/TLSR8359F64 embeds Flash with features below:

- 1) TLSR8359F512: Total 512kB (4Mbits)
- 2) TLSR8359F64: Total 64kB (0.5Mbits)
- 3) Flexible architecture: 4kB per Sector, 64kB/32kB per block.
- 4) Up to 256 Bytes per programmable page.
- 5) Write protect all or portions of memory.
- 6) Sector erase (4kB).
- 7) Block erase (32kB/64kB).
- 8) Cycle Endurance: 100,000 program/erases.
- 9) Data Retention: typical 20-year retention.
- 10) Multi firmware encryption methods for anti-cloning protection.

1.3 Typical applications

The TLSR8359 is dedicated to 2.4GHz RF System-On-Chip solution.

Its typical applications include, but are not limited to the following:

- ♦ Retail/Logistics
- ♦ Private network
- ♦ Beacon

1.4 Ordering information

Product Series	Package Type	Temperature Range	Product Part No.	Packing Method *2	Minimum Order Quantity
TLSR8359F512	32-pin 5x5mm TQFN	-40°C~+85°C	TLSR8359F512 ET32	TR	3000
TLSR8359F64	16-pin TSSOP16_ 4.96x6.4 mm	- 40℃~+85℃	TLSR8359F64ES16	TR	5000
TLSR8359	48-pin 7x7mm TQFN	-40℃~+85℃	TLSR8359ET48	TR	3000

Table 1-1Ordering information of the TLSR8359*1

¹ MSL (Moisture Sensitivity Level): The 8359 series is applicable to MSL3 (Based on JEDEC Standard J-STD-020).

[☆] After the packing opened, the product shall be stored at <30 °C / <60%RH and the product shall be used within 168 hours.</p>

 $[\]diamond$ When the color of the indicator in the packing changed, the product shall be baked before soldering.

[♦] If baking is required, please refer to IPC/JEDEC J-STD-033 for baking procedure.

² Packing method "TR" means tape and reel. The tape and reel material DO NOT support baking under high temperature.

1.5 Package

Package dimensions for the TLSR8359ET48, TLSR8359F512ET32 and TLSR8359F64ES16 are shown as below.

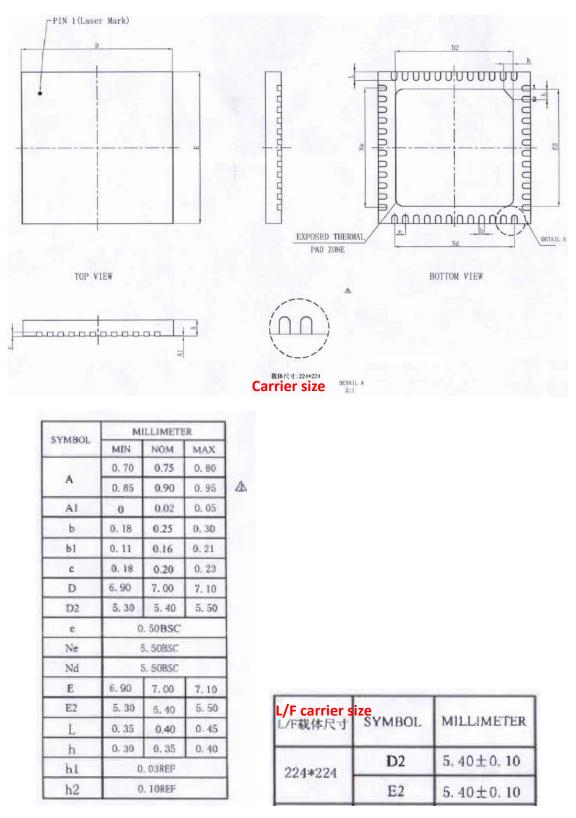
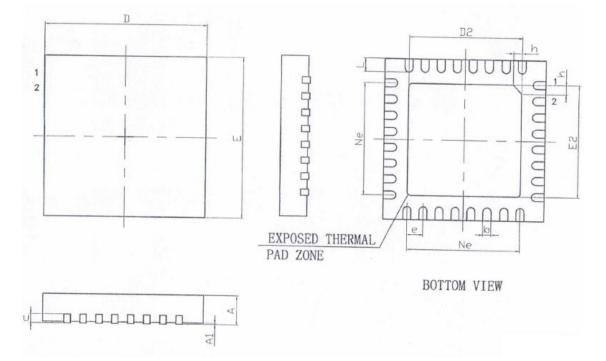
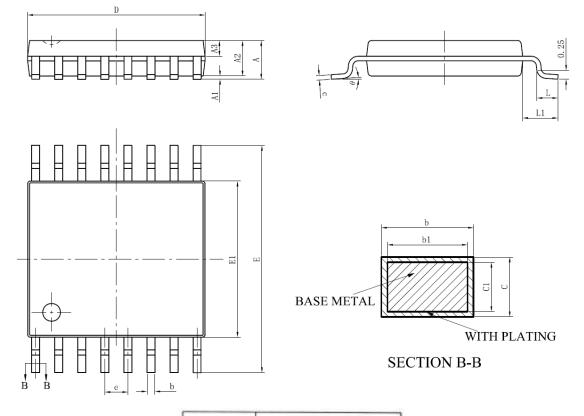



Figure 1-2 Package dimension for TLSR8359ET48 (Unit: mm)



SYMBOL	M	ILLIME	TER
SIMBOL	MIN	NOM	MAX
А	0.70	0.75	0.80
A1	-	0.02	0.05
b	0.18	0.25	0.30
с	0.18	0.20	0.25
D	4.90	5.00	5.10
D2	3.40	3.50	3.60
c	0	. 50BSC	2
Ne	3	. 50BSC	
Е	4.90	5.00	5.10
E2	3, 40	3.50	3, 60
L	0.35	0.40	0.45
h	0.30	0.35	0.40
L/F载体尺寸	150x150 130x130		

L/F carrier size

Figure 1-3 Package dimension for TLSR8359F512ET32 (Unit: mm)

SYMBOL	M	ILLIMET	ER		
SIMBOL	MIN	NOM	MAX		
A	_	_	1.20		
A1	0.05	_	0.15		
A2	0.90	1.00	1.05		
A3	0.39	0.44	0.49		
b	0.20	_	0.29		
b1	0.19	0.22	0.25		
с	0.13	_	0.18		
cl	0.12	0.13	0.14		
D	4.86	4.96	5.06		
Е	6.20	6.40	6.60		
El	4.30	4.40	4.50		
е	(0.65BSC			
L	0.45	0.60	0.75		
L1	1	1.00BSC			
θ	0	_	8°		

Figure 1-4 Package dimension for TLSR8359F64ES16 (Unit: mm)

DS-TLSR8359-E5

1.6 Pin layout

Pin layout for TLSR8359ET48 1.6.1

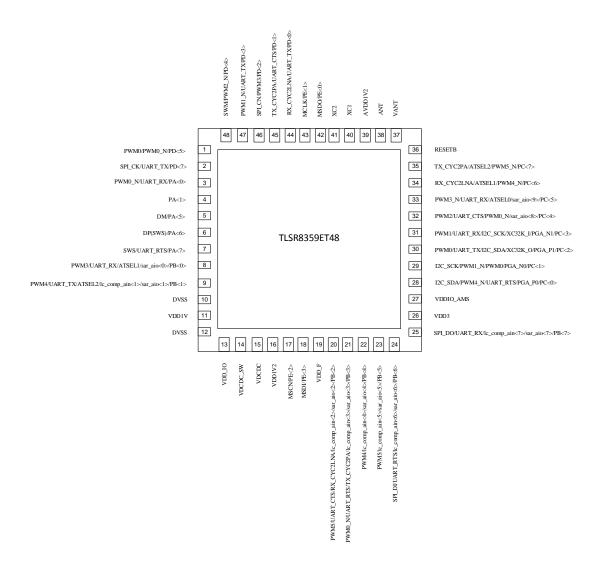


Figure 1-5 shows pin assignment for the TLSR8359ET48.

Figure 1-5 Pin assignment for TLSR8359ET48

Functions of 48 pins for the TLSR8359ET48 are described in Table 1-2:

No.	Pin Name	Туре	Description
1	PWM0/PWM0_N/PD<5>	Digital I/O	PWM0 output / PWM0 inverting output / GPIO PD[5]
2	SPI_CK/UART_TX/PD<7>	Digital I/O	SPI clock (I2C_SCK) / UART_TX / GPIO PD[7]
3	PWM0_N/UART_RX/PA<0>	Digital I/O	PWM0 inverting output / UART_RX / GPIO PA[0]
4	PA<1>	Digital I/O	GPIO PA[1]
5	DM/PA<5>	Digital I/O	USB data minus / GPIO PA[5]

Table 1-2	Pin functions for TLSR8359ET48
Table 1-2	PIN functions for TLSR8359ET48

No.	Pin Name	Туре	Description		
6	DP(SWS)/PA<6>	Digital I/O	USB data positive (Single wire slave) / GPIO PA[6]		
7	SWS/UART_RTS/PA<7>	Digital I/O	Single wire slave/ UART_RTS / GPIO PA[7]		
8	PWM3/UART_RX/ATSEL1/ sar_aio<0>/PB<0>	Digital I/O	PWM3 output / UART_RX / Antenna select pin 1 / SAR ADC input / GPIO PB[0]		
9	PWM4/UART_TX/ATSEL2/lc_comp _ain<1>/sar_aio<1>/PB<1>	Digital I/O	PWM4 output / UART_TX / Antenna select pin 2 / Low power comparator input / SAR ADC input / GPIO PB[1]		
10	DVSS	GND	Digital LDO ground		
11	VDD1V	PWR	Internal LDO generated power supply input for digital core		
12	DVSS	GND	Digital LDO ground		
13	VDD_IO	PWR	External 3.3V power supply input for IO		
14	VDCDC_SW	Analog	Connect with VDCDC via external inductor		
15	VDCDC	Analog	Connect with VDCDC_SW via external inductor		
16	VDD1V2	PWR	Internal DCDC generated power supply. Connect to GND via external capacitor. Route this 1.2V voltage power supply to AVDD1V2.		
17	MSCN/PE<2>	Digital I/O	Memory SPI chip-select (Active low) / GPI PE[2]		
18	MSDI/PE<3>	Digital I/O	Memory SPI data input / GPIO PE[3]		
19	VDD_F	PWR	Internally generated power supply to flash. Connect to GND via external capacitor.		
20	PWM5/UART_CTS/RX_CYC2LNA/ lc_comp_ain<2>/sar_aio<2>/ PB<2>	Digital I/O	PWM5 output / UART_CTS / Control external LNA / Low power comparator input / SAR ADC input / GPIO PB[2]		
21	PWM0_N/UART_RTS/TX_CYC2PA/ lc_comp_ain<3>/sar_aio<3>/ PB<3>	Digital I/O	PWM0 inverting output / UART_RTS / Control external PA / Low power comparator input / SAR ADC input / GPIO PB[3]		
22	PWM4/lc_comp_ain<4>/sar_aio<4 >/PB<4>	Digital I/O	PWM4 output / Low power comparator input / SAR ADC input / GPIO PB[4]		
23	PWM5/lc_comp_ain<5>/sar_aio<5 >/PB<5>	Digital I/O	PWM5 output / Low power comparator input / SAR ADC input / GPIO PB[5]		
24	SPI_DI/UART_RTS/lc_comp_ain<6 >/sar_aio<6>/PB<6>	Digital I/O	SPI data input (I2C_SDA) / UART_RTS / Low power comparator input / SAR ADC input / GPIO PB[6]		
25	SPI_DO/UART_RX/lc_comp_ain<7 >/sar_aio<7>/PB<7>	Digital I/O	SPI data output / UART_RX / Low power comparator input / SAR ADC input / GPIO PB[7]		
26	VDD3	PWR	Connect to an external 3.3V power supply		
27	7 VDDIO_AMS		External 3.3V power supply input for analog/mixed signal circuitry.		

No.	Pin Name	Туре	Description
28	I2C_SDA/PWM4_N/UART_RTS/ PGA_P0/PC<0>	Digital I/O	I2C serial data / PWM4 inverting output / UART_RTS / PGA left channel positive input / GPIO PC[0]
29	I2C_SCK/PWM1_N/PWM0/ PGA_N0/PC<1>	Digital I/O	I2C serial clock / PWM1 inverting output / PWM0 output / PGA left channel negative input / GPIO PC[1]
30	PWM0/UART_TX/I2C_SDA/XC32K _O/PGA_P1/PC<2>	Digital I/O	PWM0 output / UART_TX / I2C serial data / (optional) 32kHz crystal output / PGA right channel positive input / GPIO PC[2]
31	PWM1/UART_RX/I2C_SCK/XC32K_ I/PGA_N1/PC<3>	Digital I/O	PWM1 output / UART_RX / I2C serial clock / (optional) 32kHz crystal input / PGA right channel negative input / GPIO PC[3]
32	PWM2/UART_CTS/PWM0_N/ sar_aio<8>/PC<4>	Digital I/O	PWM2 output / UART_CTS / PWM0 inverting output / SAR ADC input / GPIO PC[4]
33	PWM3_N/UART_RX/ATSELO/ sar_aio<9>/PC<5>	Digital I/O	PWM3 inverting output / UART_RX / Antenna select pin 0 / SAR ADC input / GPIO PC[5]
34	RX_CYC2LNA/ATSEL1/PWM4_N/ PC<6>	Digital I/O	Control external LNA / Antenna select pin 1 / PWM4 inverting output / GPIO PC[6]
35	TX_CYC2PA/ATSEL2/PWM5_N/ PC<7>	Digital I/O	Control external PA / Antenna select pin 2 / PWM5 inverting output / GPIO PC[7]
36	RESETB	RESET	Power on reset, active low
37	VANT	PWR	Internally generated voltage output to bias internal PA. Connect to ANT using an external inductor.
38	ANT	Analog	RF antenna, connect to VANT using external inductor
39	AVDD1V2	PWR	Power supply input for internal RF Modules. Route from VDD1V2. Connect to GND via external capacitor.
40	XC1	Analog	Connect 24MHz crystal
41	XC2	Analog	Connect 24MHz crystal
42	MSDO/PE<0>	Digital I/O	Memory SPI data output / GPIO PE[0]
43	MCLK/PE<1>	Digital I/O	Memory SPI clock / GPIO PE[1]
44	RX_CYC2LNA/UART_TX/PD<0>	Digital I/O	Control external LNA / UART_TX / GPIO PD[0]
45	TX_CYC2PA/UART_CTS/PD<1>	Digital I/O	Control external PA / UART_CTS / GPIO PD[1]
46	SPI_CN/PWM3/PD<2>	Digital I/O	SPI chip select (Active low) / PWM3 output / GPIO PD[2]
47	PWM1_N/UART_TX/PD<3>	Digital I/O	PWM1 inverting output / UART_TX / GPIO PD[3]
48	SWM/PWM2_N/PD<4>	Digital I/O	Single wire master / PWM2 inverting output / GPIO PD[4]

1.6.2 Pin layout for TLSR8359F512ET32

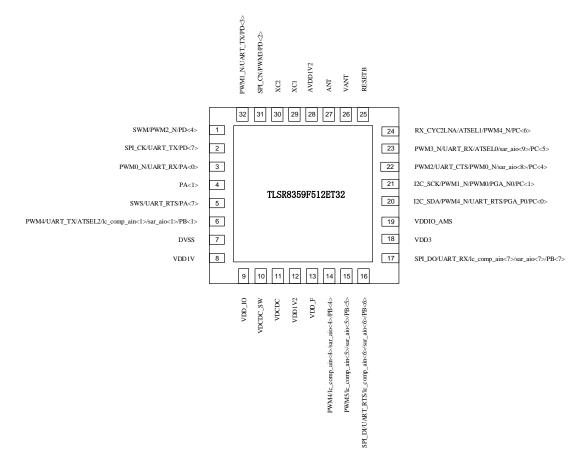


Figure 1-6 Pin assignment for TLSR8359F512ET32

Functions of 32 pins for the TLSR8359F512ET32 are described in Table 1-3:

Table 1- 3	Pin functions for TLSR8359F512ET32
10010 1 0	

No.	Pin Name	Туре	Description
1	SWM/PWM2_N/PD<4>	Digital I/O	Single wire master / PWM2 inverting output / GPIO PD[4]
2	SPI_CK/UART_TX/PD<7>	Digital I/O	SPI clock (I2C_SCK) / UART_TX / GPIO PD[7]
3	PWM0_N/UART_RX/PA<0>	Digital I/O	PWM0 inverting output / UART_RX / GPIO PA[0]
4	PA<1>	Digital I/O GPIO PA[1]	
5	SWS/UART_RTS/PA<7>	Digital I/O	Single wire slave/ UART_RTS / GPIO PA[7]
6	PWM4/UART_TX/ATSEL2/lc_comp _ain<1>/sar_aio<1>/PB<1>	Digital I/O	PWM4 output / UART_TX / Antenna select pin 2 / Low power comparator input / SAR ADC input / GPIO PB[1]
7	DVSS	GND	Digital LDO ground
8	VDD1V	PWR Internal LDO generated power supply input for dia core	
9	VDD_IO	PWR	External 3.3V power supply input for IO
10	VDCDC_SW	Analog	Connect with VDCDC via external inductor

No.	. Pin Name Type		Description
11	VDCDC	Analog	Connect with VDCDC_SW via external inductor
12	VDD1V2	PWR	Internal DCDC generated power supply. Connect to GND via external capacitor. Route this 1.2V voltage power supply to AVDD1V2.
13	VDD_F	PWR	Internally generated power supply to flash. Connect to GND via external capacitor.
14	PWM4/lc_comp_ain<4>/sar_aio<4 >/PB<4>	Digital I/O	PWM4 output / Low power comparator input / SAR ADC input / GPIO PB[4]
15	PWM5/lc_comp_ain<5>/sar_aio<5 >/PB<5>	Digital I/O	PWM5 output / Low power comparator input / SAR ADC input / GPIO PB[5]
16	SPI_DI/UART_RTS/lc_comp_ain<6 >/sar_aio<6>/PB<6>	Digital I/O	SPI data input (I2C_SDA) / UART_RTS / Low power comparator input / SAR ADC input / GPIO PB[6]
17	SPI_DO/UART_RX/lc_comp_ain<7 >/sar_aio<7>/PB<7>	Digital I/O	SPI data output / UART_RX / Low power comparator input / SAR ADC input / GPIO PB[7]
18	VDD3	PWR	Connect to an external 3.3V power supply
19	VDDIO_AMS	PWR	External 3.3V power supply input for analog/mixed signal circuitry.
20	I2C_SDA/PWM4_N/UART_RTS/ PGA_P0/PC<0>	Digital I/O	I2C serial data / PWM4 inverting output / UART_RTS / PGA left channel positive input / GPIO PC[0]
21	I2C_SCK/PWM1_N/PWM0/ PGA_N0/PC<1>	Digital I/O	I2C serial clock / PWM1 inverting output / PWM0 output / PGA left channel negative input / GPIO PC[1]
22	PWM2/UART_CTS/PWM0_N/ sar_aio<8>/PC<4>	Digital I/O	PWM2 output / UART_CTS / PWM0 inverting output / SAR ADC input / GPIO PC[4]
23	PWM3_N/UART_RX/ATSELO/ sar_aio<9>/PC<5>	Digital I/O	PWM3 inverting output / UART_RX / Antenna select pin 0 / SAR ADC input / GPIO PC[5]
24	RX_CYC2LNA/ATSEL1/PWM4_N/ PC<6>	Digital I/O	Control external LNA / Antenna select pin 1 / PWM4 inverting output / GPIO PC[6]
25	RESETB	RESET	Power on reset, active low
26	VANT	PWR	Internally generated voltage output to bias internal PA. Connect to ANT using an external inductor.
27	ANT	Analog	RF antenna, connect to VANT using external inductor
28	AVDD1V2	PWR	Power supply input for internal RF Modules. Route from VDD1V2. Connect to GND via external capacitor.
29	XC1	Analog	Connect 24MHz crystal
30	XC2	Analog	Connect 24MHz crystal
31	SPI_CN/PWM3/PD<2>	Digital I/O	SPI chip select (Active low) / PWM3 output / GPIO PD[2]
32	PWM1_N/UART_TX/PD<3>	Digital I/O	PWM1 inverting output / UART_TX / GPIO PD[3]

1.6.3 Pin layout for TLSR8359F64ES16

Figure 1-7 shows pin assignment for the TLSR8359F64ES16.

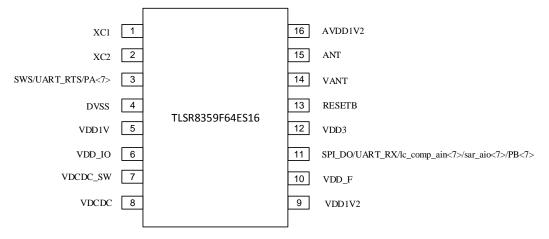


Figure 1-7 Pin assignment for TLSR8359F64ES16

Functions of 16 pins for the TLSR8359F64ES16 are described in Table 1-4:

Table 1-4 Pin fu	nctions for	TLSR8359F64ES16
------------------	-------------	-----------------

No.	Pin Name	Туре	Description
1	XC1	Analog	Connect 24MHz crystal
2	XC2	Analog	Connect 24MHz crystal
3	SWS/UART_RTS/PA<7>	Digital I/O	Single wire slave/ UART_RTS / GPIO PA[7]
4	DVSS	GND	Digital LDO ground
5	VDD1V	PWR	Internal LDO generated power supply input for digital core
6	VDD_IO	PWR	External 3.3V power supply input for IO
7	VDCDC_SW	Analog	Connect with VDCDC via external inductor
8	VDCDC	Analog	Connect with VDCDC_SW via external inductor
9	VDD1V2 PW		Internal DCDC generated power supply. Connect to GND via external capacitor. Route this 1.2V voltage power supply to AVDD1V2.
10	VDD_F	PWR	Internally generated power supply to flash. Connect to GND via external capacitor.
11	SPI_DO/UART_RX/lc_comp_ain< 7>/sar_aio<7>/PB<7>	Digital I/O	SPI data output / UART_RX / Low power comparator input / SAR ADC input / GPIO PB[7]
12	VDD3	PWR	Connect to an external 3.3V power supply
13	RESETB	RESET	Power on reset, active low
14	VANT	PWR	Internally generated voltage output to bias internal PA. Connect to ANT using an external inductor.

No.	Pin Name	Туре	Description	
15	ANT	Analog	RF antenna, connect to VANT using external inductor	
16	AVDD1V2	PWR	Power supply input for internal RF Modules. Route from VDD1V2. Connect to GND via external capacitor.	

1.6.4 Notes

- 1) All digital IOs including PA<0> ~ PD<7> can be used as GPIOs and have configurable pull-up/pulldown resistor.
- 2) SPI:
 - ♦ PD<7>: SPI_CK, PB<6>: SPI_DI, PB<7>: SPI_DO, PD<2>: SPI_CN
- 3) I2C:
 - ♦ PC<0> ~ PC<3> can be used as I2C. PC<0>: I2C_SDA, PC<1>: I2C_SCK, PC<2>: I2C_SDA, PC<3>: I2C_SCK
 - ♦ I2C can also be multiplexed with SPI interface, i.e. I2C_SDA/I2C_SCK can be multiplexed with SPI_DI (DI)/SPI_CK (CK) respectively.
- 4) PGA input: PC<0>~PC<3>. Please refer to section 11 PGA.
- 5) UART:
 - ◇ PA<0>: UART_RX, PB<0>: UART_RX, PB<1>: UART_TX, PB<7>: UART_RX, PC<2>: UART_TX, PC<3>: UART_RX, PC<5>: UART_RX, PD<0>: UART_TX, PD<3>: UART_TX, PD<7>: UART_TX
 - ♦ UART hardware flow control:

PA<7>: UART_RTS, PB<2>: UART_CTS, PB<3>: UART_RTS, PB<6>: UART_RTS, PC<0>: UART_RTS, PC<4>: UART_CTS, PD<1>: UART_CTS

- 6) USB:
 - ♦ PA<5>: DM, PA<6>: DP
- 7) Single Wire debug interface:
 - ♦ PA<7>: SWS
 - \diamond SWS can also be multiplexed with DP.
 - ♦ PD<4>: SWM
- 8) RX_CYC2LNA & TX_CYC2PA:
 - ◇ PB<2>: RX_CYC2LNA, PB<3>: TX_CYC2PA, PC<6>: RX_CYC2LNA, PC<7>: TX_CYC2PA, PD<0>: RX_CYC2LNA, PD<1>: TX_CYC2PA
 - RX_CYC2LNA/TX_CYC2PA serves to control enabling external PA/LNA. Please refer to section 3.1
 Block diagram.
- 9) ATSEL0~2:
 - ♦ PB<0>: ATSEL1, PB<1>: ATSEL2, PC<5>: ATSEL0, PC<6>: ATSEL1, PC<7>: ATSEL2

DS-TLSR8359-E5

- ATSEL0~2 serves to select one of up to eight external antennas connected to the antenna select component. The selected antenna channel is connected to the RF_IO pin.
- 10) Low power comparator input: PB<1>~ PB<7>. Please refer to section 13 LowPowerComparator.
- 11) ADC GPIO input: PB<0>~ PB<7>, PC<4>~ PC<5>.
- 12) For register configuration to select pin multiplexed function, please refer to section **7.1.1.2 Multiplexed functions**.
- 13) For 24MHz crystal, the load capacitor range supported by design is 7.33pF~12.66pF. If the crystal needs load capacitor of 15pF, two external capacitors will be required.
- 14) Do not use PC<7:5> for dynamic applications. It's highly recommended to use these IOs in DC applications, e.g. as control or detect lines.
- 15) Pin drive strength:
 - PA<5:7> and PB<0:3> support drive strength up to 8mA (8mA when "DS"=1, 4mA when "DS"=0); PB<4:7> support drive strength up to 16mA (16mA when "DS"=1, 12mA when "DS"=0); other GPIOs (PA<0:4>, PC<0:7> and PD<0:7>) support drive strength up to 4mA (4mA when "DS"=1, 2mA when "DS"=0).
 - "DS" configuration will take effect when the pin is used as output. Please refer to section
 7.1.1 Basic configuration for the corresponding "DS" register address and the default setting.

2 Memory and MCU

2.1 Memory

All packages of the TLSR8359 embed 64kB SRAM.

The TLSR8359F512 embeds 512kB internal FLASH.

The TLSR8359F64 embeds 64kB internal FLASH.

The TLSR8359ET48 has no internal flash, but supports up to 16MB external flash via the MSPI interface.

2.1.1 SRAM/Register

SRAM/Register memory map is shown as follows:

32kB SRAM	0x850000 0x84FFFF
(without retention in deep)	
	0x848000 0x847FFF
16kB SRAM (with retention in deep)	
	0x844000 0x843FFF
8kB SRAM (with retention in deep)	0x842000
SkB SRAM (with retention in deep)	0x841FFF
	0x840000 0x83FFFF
Register	
	0x800000

Figure 2-1 Physical memory map

♦ Register address: 0x800000 ~ 0x83FFFF.

♦ SRAM Space:

Address for two independent 8kB SRAMs with retention in deep sleep: 0x840000 ~ 0x841FFF, 0x842000 ~ 0x843FFF.

Address for 16kB SRAM with retention in deep sleep: 0x844000 ~ 0x847FFF.

Address for 32kB SRAM without retention in deep sleep: 0x848000 ~ 0x84FFFF.

Both register and SRAM address can be accessed (read or write) via debugging interface (SWS/SWM, SPI/I2C/USB interface).

```
DS-TLSR8359-E5
```


Register (Base address: 0x800000)	
RS VD	
Madam	0x40000
Modem	0x01200
RSVD	0x01020
RSVD linklayer	0x01000
RSVD	0x00f00
dma	0x00d00
DMA fifo	0x00c00
RSVD	0x00b00
pwm	0x00800
System timer	0x00780
-	0x00740
RSVD	0x00700
MCU gpio	0x00600
	0x00580
audio	0x00560
AES	0x00540
RSVD	0x00500
Baseband	0x00400
RSVD	0x00200
usb	0x00100
I2C address map	0x000e0
qdec	0x000d0
RSVD	0x000c0
RSVD	0x000b8
uart	0x000b4
swire	0x000b0
RSVD	
uart	0x000a0
RSVD	0x00090
System control	0x00080
RSVD	0x00040
RSVD	0x00010
spi	0x0000c
i2c	0x00008
120	0x00000

Figure 2-2 Register space

2.1.2 Flash

For the TLSR8359ET48, external Flash address can be accessed via MSPI interface.

For the TLSR8359F512 and TLSR8359F64, the internal Flash mainly supports page program, sector/block/chip erase operations, and deep power down operation. Please refer to the corresponding SDK for Flash memory operation details.

For chip identification and traceability, the Flash is preloaded with Unique ID (UID). User is not allowed to modify this preloaded UID, but can read the UID via corresponding API interface.

MCU uses the system frequency to load instructions, and adopts flash driver to access (read/write) flash with the speed of half of the system clock.

2.1.3 E-Fuse

The non-volatile E-Fuse section is preloaded with 4-byte decryption key and 4-byte chip UID, as shown below.

	Decryption	Chip UID				Chip UID	
	it key	Internal information	Wafer No.	Lot No.	Internal information		
informatio	Bit0~31	Bit32~47	Bit48~52	Bit53~55	Bit56~63		

2.2 Firmware encryption

The TLSR8359 supports multiple firmware encryption methods to achieve the anti-cloning protection, including:

♦ UID-based authentication code generation method

During firmware burning (e.g. via specific burning jig), user can use customized key and AES encryption algorithm to encrypt the UID read from the chip flash, generate unique ciphertext and write the ciphertext into E-Fuse section.

During application, an encryption authentication procedure is added. User should use the same key and AES encryption algorithm to encrypt the UID read from the chip flash, and generate new ciphertext. Before running main application firmware, the new ciphertext will be compared with the ciphertext read from the E-Fuse section. Only when the authentication passes, i.e. the comparison result matches, the main firmware will be up and running, otherwise the chip will stop running the main firmware.

♦ Bootloader-based firmware encryption/decryption

The firmware can be encrypted using a customer-provided security key. The customer security key is written into a specific secure register, and becomes unreadable. Any attempt to read the key will only result in either all 1's or all 0's.

The encrypted firmware can be generated based on the plaintext firmware and the customer security key. The customer can burn the security key into the obscured memory area and also the encrypted firmware into Flash.

The firmware is readable by all, but appears as garbled binaries to 3rd party.

2.3 MCU

The TLSR8359 integrates a powerful 32-bit MCU developed by Telink. The digital core is based on 32-bit RISC, and the length of instructions is 16 bits; four hardware breakpoints are supported.

2.4 Working modes

The TLSR8359 supports six working modes, including Active, Idle, Suspend, Deep sleep with SRAM retention, deep sleep without SRAM retention, and Shutdown.

- ♦ The Power Management (PM) module is always active in all working modes.
- ✤ For modules such as MCU, RF transceiver (Radio), and SRAM, the state depends on working mode, as shown below.

Mode	Active	Idle	Suspend	Deep sleep with SRAM retention	Deep sleep without SRAM retention	Shutdown
MCU	active	stall	stall	off	off	off
32k Normal SRAM (without retention in deep sleep)	on	on	on	off	off	off
Radio	available	available	off	off	off	off
USB	available	available	off	off	off	off
Wakeup time to Active mode		Ous	100us	Shorter than deep sleep without retention, almost same as Suspend	1ms	10ms
32k retention SRAMs (with retention in deep sleep)	full	full	full	full	off	off
Wakeup on RTC (32K Timer wakeup)			available	available	available	off
Wakeup on pin (IO wakeup)			available	available	available	off
Wakeup on interrupt		available				
Wakeup on reset pin (RESETB)		available	available	available	available	on
Current	Please refer to section 15.3 DC characteristics .					

Table 2-2 Working modes

*Notes:

- 1) "active": MCU is at working state.
- 2) "stall": In Idle and Suspend mode, MCU does not work, while its clock is still running.
- 3) "available" for Modules: It's selectable to be at working state, or stall/be powered down if it does not need to work.
- 4) "available"/"on" for wakeup: Corresponding wakeup method is supported.
- 5) "off" for wakeup: Corresponding wakeup method is not supported.
- 6) "on"/"off"/"full" for SRAMs:
 - ☆ "on": The 32kB normal SRAM is powered on and works normally (can be accessed) in Active, Idle and Suspend mode.
 - "full": Full speed. In Active, Idle and Suspend mode, the retention SRAMs are powered on and work normally (can be accessed); in Deep sleep with SRAM retention, the retention SRAMs are powered on, however, the contents of the retention SRAMs can be retained and cannot be accessed.
 - "off": The 32kB normal SRAM is powered down in two Deep sleep modes and Shutdown mode. The retention SRAMs are powered down in Deep sleep without SRAM retention and Shutdown mode.
- 7) Current:
 - In Deep sleep without SRAM retention, only the PM module is active, all digital and analog modules are powered down, thus the power consumption is largely decreased.
 - In Deep sleep with SRAM retention, the PM module is active, all analog and digital modules except for the retention SRAMs are powered down, thus the power consumption is a little higher than in Deep sleep without SRAM retention, but much lower than in Suspend.

Address	R/W Description		Reset Value
0x35	R/W	buffer, watch dog reset clean	0x20
0x36	R/W	buffer, watch dog reset clean	0x00
0x37	R/W	buffer, watch dog reset clean	0x00
0x38	R/W	buffer, watch dog reset clean	0x00
0x39	R/W	buffer, watch dog reset clean	Oxff
0x3a	R/W	buffer, power on reset clean	0x00
0x3b	R/W	buffer, power on reset clean	0x00
0x3c	R/W	buffer, power on reset clean 0>	

Table 2- 3Retention analog registers in deep sleep

Analog registers ($0x35 \sim 0x3c$) as shown in Table 2- 3 are retained in deep sleep mode and can be used to store program state information across deep sleep cycles.

Analog registers 0x3a~0x3c are non-volatile even when chip enters deep sleep or chip is reset by watchdog or software, i.e. the contents of these registers won't be changed by deep sleep or watchdog reset or chip software reset.

- Analog registers 0x35[~]0x39 are non-volatile in deep sleep, but will be cleared by watchdog reset or chip software reset.
- ☆ After POR (Power-On-Reset), all registers will be cleared to their default values, including these analog registers.

User can set flag in these analog registers correspondingly, so as to check the booting source by reading the flag.

For chip software reset, please refer to section **2.5 Reset**.

2.5 Reset

The chip supports three types of reset methods, including POR (Power-On-Reset), watchdog reset and software reset.

- 1) POR: After power on, the whole chip will be reset, and all registers will be cleared to their default values.
- 2) Watchdog reset: A programmable watchdog is supported to monitor the system. If watchdog reset is triggered, registers except for the retention analog registers 0x3a~0x3c will be cleared.
- 3) Software reset: It is also feasible to carry out software reset for the whole chip or some modules.
 - Setting address 0x6f[5] as 1b'1 is to reset the whole chip. Similar to watchdog reset, the retention analog registers 0x3a~0x3c are non-volatile, while other registers including 0x35~0x39 will be cleared by chip software reset.
 - ♦ Addresses 0x60~0x62 serve to reset individual modules: if some bit is set to logic "1", the corresponding module is reset.

Address	Mnemonic	Туре	Description	Reset Value
0x60	RSTO	R/W	Reset control, 1 for reset, 0 for clear [0]: SPI [1]: I2C [2]: UART (rs232) [3]: USB [4]: PWM [5]: QDEC [6]: RSVD [7]: Swire	0x7c
0x61	RST1	R/W	[0] ZB [1] System Timer [2] DMA [3] ALGM	
0x62	RST2	R/W	[0] AIF	0xc7

Table 2-4 Register configuration for software reset

Address	Mnemonic	Туре	Description	Reset Value
			[1] RSVD	
			[2] DFIFO	
			[3] RSVD	
			[4] RISC	
			[5] MCIC	
			[6] RISC1 (R)	
			[7] MCIC1 (R)	
			[0]: suspend enable (RW)	
			[5]: rst all (act as watchdog reset)	
0x6f	PWDNEN	R/W	[6]: rsvd (mcu low power mode) (W)	0x00
			[7]: stall mcu trig If bit[0] set 1, then system will	
			go to suspend. Or only stall mcu (W)	

2.6 Power Management

The multiple-stage Power Management (PM) module is flexible to control power state of the whole chip or individual functional blocks such as MCU, RF Transceiver, and peripherals.

2.6.1 Power-On-Reset (POR) and Brown-out detect

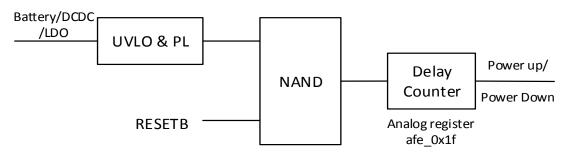


Figure 2-3 Control logic for power up/down

The whole chip power up and down is controlled by the UVLO (Ultra-low Voltage Lockout) & PL (Power Logic) module and the external RESETB pin via the logic shown in the above diagram. UVLO takes the external power supply as input and releases the lock only when the power supply voltage is higher than a preset threshold. The RESETB pin has an internal pull-up resistor; an external Cap can be connected on the RESETB pin to control the POR delay.

After both UVLO and RESETB release, there is a further configurable delay before the system reset signal ("Sysrst") is released. The delay is adjusted by analog register afe_0x1f. Since the content of afe_0x1f is reset to default only after power cycle, watchdog reset, or software reset, the delay change using afe_0x1f is only applicable when the chip has not gone through these reset conditions. For example, after deep sleep wakeup, the setting in afe_0x1f will take effect.

Table 2-5 Analog register to control delay counters

Address	Name	Туре	Description	Default
afe_0x1f	r_dly1	R/W	wait for DCDC ready (16kHz count)	0x40

Initial Power up

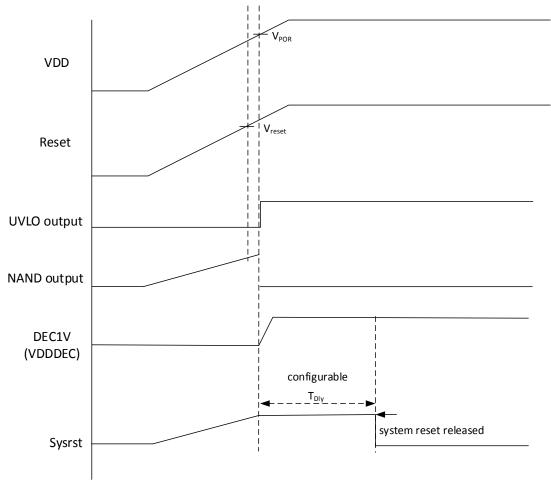
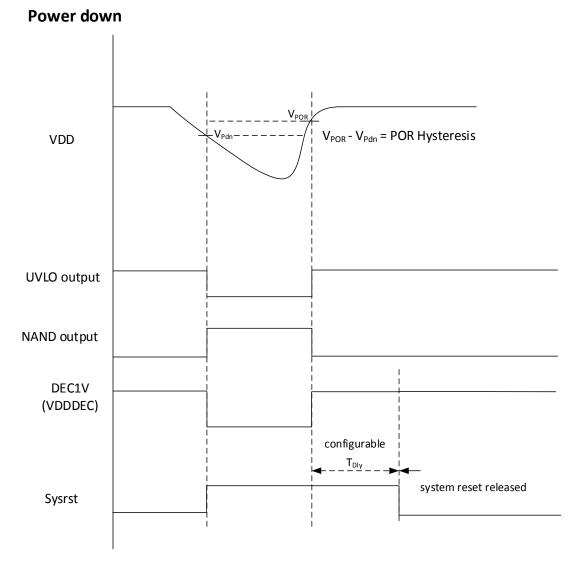



Figure 2-4 Initial Power-up sequence

SEMICO

Symbol	Parameter	Min.	Тур.	Max.	Unit
Vpor	VDD voltage when V _{UVLO} turns to high level		1.62		V
V _{Pdn}	VDD voltage when V _{UVLO} turns to low level		1.55		V
T _{Dly}	Delay counter value	Config	urable via ana	log register af	e_0x1f

2.6.2 Working mode switch

In Active mode, MCU is active, all SRAMs are accessible, and other modules are selectable whether to be at working state.

The chip can switch to Idle mode to stall the MCU. In this mode, all SRAMs are still accessible, modules such as RF transceiver, USB are still selectable whether to be at working state. The chip can be triggered to Active mode by interrupt or RESETB pin, and the time to switch to Active mode is negligible.

To decrease power consumption to different levels, the chip can switch to power saving mode (Suspend, Deep sleep with SRAM retention, Deep sleep without SRAM retention, Shutdown) correspondingly. (Please refer to Table 2- 2.)

- In Suspend mode, MCU stalls, all SRAMs are still accessible, the PM module is active, and modules such as RF transceiver, USB are powered down. The chip can be triggered to Active mode by 32K Timer, IO pin or RESETB pin. It takes 100us or so to switch from Suspend mode to Active mode.
- In Deep sleep with SRAM retention, the PM module is active, analog and digital modules except for the retention SRAMs are powered down, while the retention SRAMs can be retained and not accessible. The chip can be triggered to Active mode by 32K Timer, IO pin or RESETB pin. The time to switch to Active mode is shorter than Deep sleep without SRAM retention and close to Suspend.
- In Deep sleep without SRAM retention, only the PM module is active, while analog and digital modules including the retention SRAMs are powered down. The chip can be triggered to Active mode by 32K Timer, IO pin or RESETB pin. The time to switch to Active mode is 1ms or so.
- In Shutdown mode, all digital and analog modules are powered down, and only the PM module is active. The chip can be triggered to Active mode by RESETB pin only. The time to switch to Active mode is 10ms or so.

User can directly invoke corresponding library function to switch working mode of the chip.

If certain module doesn't need to work, user can power down this module in order to save power.

Address	Local name	Default	Description
afe_0x05<0>	32K_rc_pd	0	Power down 32kHz RC oscillator 1: Power down, 0: Power up
afe_0x05<1>	32k_xtal_pd	1	Power down 32kHz crystal 1: power down, 0: power up
afe_0x05<2>	24M_rc_pd	0	Power down of 24MHz RC oscillator 1: Power down, 0: Power up
afe_0x05<3>	xtal_LDO_pd	0	Power down of 24MHz crystal oscillator 1: Power down, 0: Power up

Table 2-7 3.3V analog registers for module power up/down control

Address	Local name	Default	Description
afe_0x05<4>	pd_pl_all_3v	0	Power down of power logic, 4.2V VBUS_LDO and DCDC 1: Power down, 0: Power up
afe_0x05<5>	pd_pl_dcdc_3v	0	Power down of DCDC 1: Power down, 0: Power up
afe_0x05<6>	pd_pl_vbus_ldo_3v	0	Power down of VBUS_LDO 1: Power down, 0: Power up
afe_0x05<7>	ana_ldo_pd_3V	0	Power down baseband pll LDO 1: Power down, 0: Power up
afe_0x06	rsvd		
afe_0x07<0>	spd_ldo_pd	1	Power down of spd ldo 1: Power down, 0: power up
afe_0x07<1>	dig_ldo_pd	0	Power down of main digital Ido 1: Power down, 0: power up
afe_0x07<2>	dig_ret_pd	1	Power down of retention Ido 1: Power down, 0: power up
afe_0x07<3>	pd_lc_comp_3v	1	Power down of low current comparator: 1: Power down, 0: Power up
afe_0x07<4>	pd_temp_sensor_3v	1	Power down of temperature sensor: 1: Power down, 0: Power up

2.6.3 LDO and DCDC

The chip embedded DCDC can generate 1.8V output voltage and supply power for the internal flash; the DCDC can also generate 1.4V output voltage.

The embedded LDO regulator takes the 1.4V voltage output from the DCDC, and generates 1.2V regulated voltage to supply power for 1.2V digital core and analog modules in Active/Idle/Suspend mode.

2.6.4 VBAT and VANT power-supply mode

The chip provides two power-supply modes including VBAT mode and VANT mode.

- In VBAT mode, the chip is directly supplied with power by its battery voltage. The maximum output power is related to power supply voltage, for example, the maximum power is 10dBm or so at 3.3V power supply.
- In VANT mode, the chip is supplied with 1.2V voltage by the embedded DCDC and LDO. In this mode, output power won't change with AVDD basically, and the maximum power is 5dBm or so. Corresponding to the VBAT mode, the VANT mode is more power-saving at the same Tx power.

2.7 Wakeup sources

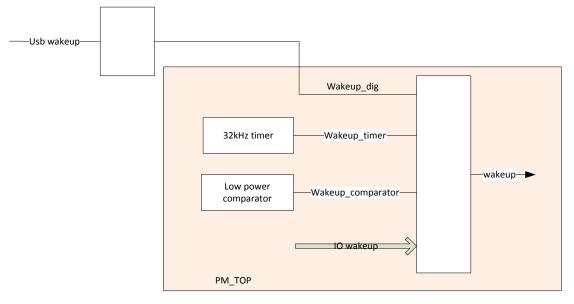


Figure 2-6 Wakeup sources

2.7.1 Wakeup source - USB

This wakeup source can only wake up the system from suspend mode.

First, set the digital register 0x6e bit[2] as 1b'1.

To activate this mode, analog register afe_0x26[5] should also be set as 1b'1.

Once USB host sends out resuming signal, the system will be woke up.

2.7.2 Wakeup source – 32kHz timer

This wakeup source is able to wake up the system from suspend mode or two deep sleep modes.

To enable the wakeup source from 32kHz timer, analog register afe_0x26[6] should be set as 1b'1.

2.7.3 Wakeup source – low power comparator

This wakeup source is able to wake up the system from suspend mode or two deep sleep modes.

To enable the wakeup source from low power comparator, analog register 0x26[7] should be set as 1b'1. The low power comparator wakeup is active high.

2.7.4 Wakeup source – IO

This wakeup source is able to wake up the system from suspend mode or two deep sleep modes. And IO wakeup supports high level or low level wakeup which is configurable via polarity control registers.

Analog register afe_0x26[4] should be set as 1b'1 to enable IO wakeup source.

Enabling control analog registers: PA[7:0] enabling control register is afe_0x27[7:0], PB[7:0] enabling control register is afe_0x28[7:0], PC[7:0] enabling control register is afe_0x28[7:0]. Total wakeup pin can be up to 32.

Polarity control registers: PA[7:0] polarity control register is afe_0x21[7:0], PB[7:0] polarity control register is afe_0x22[7:0], PC[7:0] polarity control register is afe_0x23[7:0], and PD[7:0] polarity control register is afe_0x24[7:0].

The corresponding driver is available so that user can directly invoke it to use IO wakeup source.

Analog register 0x44[3:0] indicates the wakeup source which triggers system wakeup. After wakeup, the corresponding wakeup status will be set as 1b'1 automatically, and it's needed to write 1 to manually clean the status.

2.7.5 Register table

Address	Name	Туре	Description	Default
afe_0x21	PA_POL	R/W		0x00
afe_0x22	PB_POL	R/W		0x00
afe_0x23	PC_POL	R/W	Polarity control registers for IO wakeup	0x00
afe_0x24	PD_POL	R/W		0x00
afe_0x25	rsvd	R		
			[7] low power comparator wakeup enable [6] 32kHz timer wakeup enable	
			[7] low power comparator wakeup enable[6] 32kHz timer wakeup enable[5] digital core (USB) wakeup enable[4] IO (pad) wake up enable[3] Enable/Mask filter for IO (Pad) wakeup1: Select 16us filter to filter out jitter on IO PADinput.0: IO Pad combinational logic output (disablefilter)R/W	
afe_0x26	wkup_en	R/W		0x00
_				ut jitter on IO PAD
			input.	
			0: IO Pad combinational logic output (disable	
			filter)	
afe_0x27	PA wake up enable	R/W		0x00
afe_0x28	PB wake up enable	R/W	Enabling control registers for 10 wakeup	0x00
afe_0x29	PC wake up enable	R/W	Enabling control registers for to wakeup	0x00
afe_0x2a	PD wake up enable	R/W		0x00
			[7] dcdc_rdy	
			[6] wd_status	
			Polarity control registers for IO wakeup [7] low power comparator wakeup enable [6] 32kHz timer wakeup enable [5] digital core (USB) wakeup enable [4] IO (pad) wake up enable [3] Enable/Mask filter for IO (Pad) wakeup 1: Select 16us filter to filter out jitter on IO PAD input. 0: IO Pad combinational logic output (disable filter) Enabling control registers for IO wakeup [7] dcdc_rdy	
	status	R	[4] cal_done_32k	
afe_0x44	Status	n.	[3] IO (pad) wakeup status	
			[2] digital core (USB) wakeup status	
			[1] 32k timer wakeup status	
			[0] low power comparator wakeup status	

Table 2-8Analog registers for Wakeup

Table 2-9 Digital register for Wakeup

Address	Mnemonic	Туре	Description	Reset Value
Охбе	WAKEUPEN	R/W	 Wakeup enable [0]: enable wakeup from I2C host [1]: enable wakeup from SPI host [2]: enable wakeup from USB [3]: enable wakeup from gpio [4]: enable wakeup from I2C synchronous interface System resume control [5]: enable GPIO remote wakeup [6]: if set to1, system will issue USB resume signal on USB bus [7] sleep wakeup reset system enable 	0x1f

3 2.4GHz RF Transceiver

3.1 Block diagram

The TLSR8359 integrates an advanced 2.4GHz RF transceiver. The RF transceiver works in the worldwide 2.4GHz ISM (Industrial Scientific Medical) band.

The transceiver consists of a fully integrated RF synthesizer, a Power Amplifier (PA), a Low Noise Amplifier (LNA), a TX filter, a RX filter, a TX DAC, an ADC, a modulator and a demodulator. The transceiver can be configured to work in Proprietary 1Mbps, 2Mbps, 250kbps and 500kbps mode.

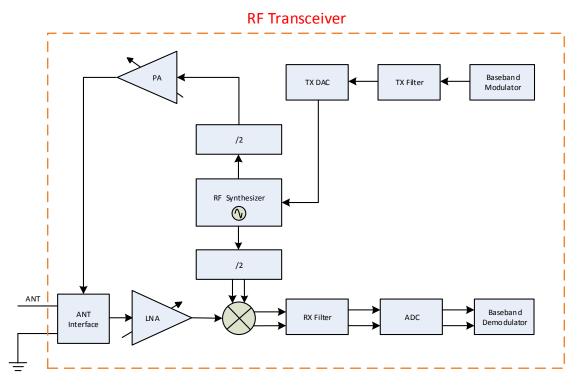


Figure 3-1 Block diagram of RF transceiver

To control external PA and LNA, first follow the GPIO lookup table (see section 7.1.1.1 GPIO lookup table) to configure the specific two pins as TX_CYC2PA and RX_CYC2LNA function, respectively. Note: To use TX_CYC2PA and RX_CYC2LNA function for the two pins, other functions with higher polarity should be disabled at the same time.

After the two pins are configured as TX_CYC2PA and RX_CYC2LNA function, the output function is enabled. Generally the two pins are high active: When both the two pins output low level, the external PA and LNA are disabled; when one of the two pins output high level, the external PA/LNA are enabled correspondingly; the two pins won't output high level simultaneously.

TX_CYC2PA	RX_CYC2LNA	External RF transceiver
L	L	Both LNA and PA OFF
L	Н	LNA ON
Н	L	PA ON
Н	Н	N/A

Table 3-1External RF t	ransceiver control	example
------------------------	--------------------	---------

The internal PA can deliver a maximum 10dBm output power, avoiding the need for an external RF PA.

3.2 Air interface data rate and RF channel frequency

Air interface data rate, the modulated signaling rate for RF transceiver when transmitting and receiving data, is configurable via related register setting: 250kbps, 500kbps, 1Mbps, 2Mbps.

For the TLSR8359, RF transceiver can operate with frequency ranging from 2.400GHz to 2.4835GHz. The RF channel frequency setting determines the center of the channel.

3.3 Baseband

The baseband is disabled by default. The corresponding API is available for user to power on/down the baseband and enable/disable clock, so that the baseband can be turned on/off flexibly.

The baseband contains dedicated hardware logic to perform fast AGC control, access code correlation, CRC checking, data whitening, encryption/decryption and frequency hopping logic.

The baseband supports all features required by proprietary 2.4GHz specification.

3.3.1 Packet format

Packet format in 2.4GHz Proprietary mode is shown as Table 3-2:

Table 3- 2	Packet format in Proprietary mode
------------	-----------------------------------

LSB			MSB
Preamble	Address code	Packet Controller + Payload	CRC
(8 bits)	(configurable 3~5 bytes)	(1~33 bytes)	(1~2 bytes)

3.3.2 RSSI and frequency offset

The TLSR8359 provides accurate RSSI (Receiver Signal Strength Indicator) and frequency offset indication.

- \diamond RSSI can be read from the 1byte at the tail of each received data packet.
- If no data packet is received (e.g. to perform channel energy measurement when no desired signal is present), real-time RSSI can also be read from specific registers which will be updated automatically.
- ♦ RSSI monitoring resolution can reach +/-1dB.
- Frequency offset can be read from the 2bytes at the tail of the data packet. Valid bits of actual frequency offset may be less than 16bits, and different valid bits correspond to different tolerance range.

Telink supplies corresponding drivers for user to read RSSI and frequency offset as needed.

4 Clock

DS-TLSR8359-E5

4.1 Clock sources

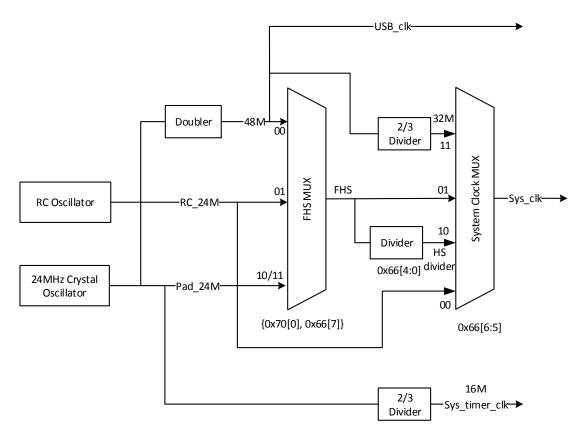


Figure 4-1 Block diagram of clock

The TLSR8359 embeds a 24MHz RC oscillator which can be used as clock source for system, as well as a 32kHz RC oscillator to provide clock source for sleep state.

External 24MHz crystal is available via pin XC1 and XC2, which can provide a Pad_24MHz clock source for system and System Timer, and generate a 48M clock via a frequency doubler to provide clock source for USB. External 32K crystal is available via pin PC<2:3>, which can provide a 32kHz clock source.

4.2 System clock

There are four selectable clock sources for MCU system clock: **RC_24M** derived from 24MHz RC oscillator, High speed clock "**FHS**", **HS divider clock** (derived from "FHS" via a frequency divider), and **32MHz clock** derived from 48MHz clock via a 2/3 frequency divider (The 48M clock is derived from 24M crystal oscillator via a frequency doubler).

The high speed clock (FHS) is selectable via address {0x70[0], 0x66[7]} from the following sources: **48MHz** clock (derived from 24M crystal oscillator via a frequency doubler), **RC_24M** (derived from 24MHz RC oscillator), and **Pad_24M** (derived from 24M crystal oscillator).

The digital register CLKSEL (address 0x66) serves to set system clock: System clock source is selectable via bit[6:5].

✤ If address 0x66[6:5] is set to 2b'10 to select the HS divider clock, system clock frequency is adjustable via address 0x66[4:0]. The formula is shown as below:

F_{System clock} = F_{FHS} / (system clock divider value in address 0x66[4:0]).

Note that address 0x66[4:0] should not be set as 0 or 1.

4.3 Module clock

Registers CLKEN0~CLKEN2 (address 0x63~0x65) are used to enable or disable clock for various modules. By disable the clocks of unused modules, current consumption could be reduced.

4.3.1 System Timer clock

System Timer clock is derived from 24M crystal oscillator via a 2/3 frequency divider. The clock frequency is fixed as 16MHz.

4.3.2 USB clock

USB clock is derived from 48M clock. The 48M clock is derived from 24M crystal oscillator via a frequency doubler.

4.4 Register table

Address	Mnemonic	R/W	Description	Default
0x63	CLKENO	R/W	Clock enable control: 1 for enable; 0 for disable [0]: SPI [1]: I2C [2]: UART (rs232) [3]: USB [4]: PWM [5]: QDEC [6]: RSVD [7]: Swire	0x83

Table 4-1 Register table related to clock

Address	Mnemonic	R/W	Description	Default
0x64	CLKEN1	R/W	[0]ZB [1]System Timer [2]DMA [3]ALGM [4]AES [5:7]RSVD	0x00
0x65	CLKEN2	R/W	[0]AIF [1]RSVD [2]DFIFO [3]RSVD [4]MC [5]MCIC [6:7]RSVD	0x30
0x66	CLKSEL	R/W	System clock select [4:0]: system clock divider (must exceed 1). If 0x66[6:5] is set as 2b'10, F _{Sysclk} = F _{FHS} / (CLKSEL[4:0]). FHS: refer to 0x70 CLKSEH. [6:5]: select system clock source 2'b00: RC_24M from RC oscillator 2'b01: FHS 2'b10: HS divider (see 0x66[4:0]) 2'b11: 32M clock (48M * 2/3 divider) [7] FHS select (see 0x70[0])	0x06
0x67		R/W	RSVD	0x00
0x68		R/W	RSVD	0x02
0x6c		R/W	RSVD	0x01
0x6d		R/W	RSVD	0x02
0x70	CLKSEH	R/W	{0x70[0], 0x66[7]} FHS select 2'b00: 48M clock doubled from 24M crystal 2'b01: RC_24M from RC oscillator 2'b1x: Pad_24M from 24M crystal oscillator	0x00
0x73	SEL	R/W	 [0]: clk32k select 0: select RC_32k from RC oscillator 1: select Pad_32k from 32K crystal oscillator [1]: DMIC clock select 1: select 32k (see 0x73[0] to select 32K source) 0: rsvd (select DMIC clk div) 	0x04

5 Timers

5.1 Timer0~Timer2

The TLSR8359 supports three timers: Timer0~ Timer2. The three timers all support four modes: Mode 0 (System Clock Mode), Mode 1 (GPIO Trigger Mode), Mode 2 (GPIO Pulse Width Mode) and Mode 3 (Tick Mode), which are selectable via the register TMR_CTRL0 (address 0x620) ~ TMR_CTRL1 (address 0x621).

Timer 2 can also be configured as "watchdog" to monitor firmware running.

5.1.1 **Register table**

	Table 5- 1	Registe	r configuration for Timer0~Timer2	
Address	Mnemonic	Туре	Description	Reset Value
0x72	Wd_status	R/W	[0] watch dog status: verify whether it is power reset (1'b0) or watch dog reset (1'b1), write 1 to clear.	00
0x620	TMR_CTRL0	RW	 [0]Timer0 enable [2:1] Timer0 mode. 0: using sclk, 1: using gpio, 2: count width of gpi, 3: tick [3]Timer1 enable [5:4] Timer1 mode. [6]Timer2 enable [7]Bit of timer2 mode 	00
0x621	TMR_CTRL1	RW	[0]Bit of timer2 mode [7:1]Low bits of watch dog capture	00
0x622	TMR_CTRL2	RW	[6:0]High bits of watch dog capture. It is compared with [31:18] of timer2 ticker[7]watch dog capture	00
0x623	TMR_STATUS	RW	 [0] timer0 status, write 1 to clear [1] timer1 status, write 1 to clear [2] timer2 status, write 1 to clear [3] watch dog status, write 1 to clear (If Watchdog is enabled, need to clear it periodically to avoid triggering watchdog reset) 	00
0x624	TMR_CAPT0_0	RW	Byte 0 of timer0 capture	00
0x625	TMR_CAPT0_1	RW	Byte 1 of timer0 capture	00
0x626	TMR_CAPT0_2	RW	Byte 2 of timer0 capture	00
0x627	TMR_CAPT0_3	RW	Byte 3 of timer0 capture	00
0x628	TMR_CAPT1_0	RW	Byte 0 of timer1 capture	00
0x629	TMR_CAPT1_1	RW	Byte 1 of timer1 capture	00
0x62a	TMR_CAPT1_2	RW	Byte 2 of timer1 capture	00
0x62b	TMR_CAPT1_3	RW	Byte 3 of timer1 capture	00
0x62c	TMR_CAPT2_0	RW	Byte 0 of timer2 capture	00
0x62d	TMR_CAPT2_1	RW	Byte 1 of timer2 capture	00

Table 5-1 Register configuration for Timer0~Timer2

Address	Mnemonic	Туре	Description	Reset Value
0x62e	TMR_CAPT2_2	RW	Byte 2 of timer2 capture	00
0x62f	TMR_CAPT2_3	RW	Byte 3 of timer2 capture	00
0x630	TMR_TICK0_0	RW	Byte 0 of timer0 ticker	00
0x631	TMR_TICK0_1	RW	Byte 1 of timer0 ticker	00
0x632	TMR_TICK0_2	RW	Byte 2 of timer0 ticker	00
0x633	TMR_TICK0_3	RW	Byte 3 of timer0 ticker	00
0x634	TMR_TICK1_0	RW	Byte 0 of timer1 ticker	00
0x635	TMR_TICK1_1	RW	Byte 1 of timer1 ticker	00
0x636	TMR_TICK1_2	RW	Byte 2 of timer1 ticker	00
0x637	TMR_TICK1_3	RW	Byte 3 of timer1 ticker	00
0x638	TMR_TICK2_0	RW	Byte 0 of timer2 ticker	00
0x639	TMR_TICK2_1	RW	Byte 1 of timer2 ticker	00
0x63a	TMR_TICK2_2	RW	Byte 2 of timer2 ticker	00
0x63b	TMR_TICK2_3	RW	Byte 3 of timer2 ticker	00

5.1.2 Mode0 (System Clock Mode)

In Mode 0, system clock is employed as clock source.

After Timer is enabled, Timer Tick (i.e. counting value) is increased by 1 on each positive edge of system clock from preset initial Tick value. Generally the initial Tick value is set to 0.

Once current Timer Tick value matches the preset Timer Capture (i.e. timing value), an interrupt is generated, Timer stops counting and Timer status is updated.

Steps of setting Timer0 for Mode 0 is taken as an example.

1st: Set initial Tick value of Timer0

Set Initial value of Tick via registers TMR_TICK0_0~TMR_TICK0_3 (address 0x630~0x633). Address 0x630 is lowest byte and 0x633 is highest byte. It's recommended to clear initial Timer Tick value to 0.

2nd: Set Capture value of Timer0

Set registers TMR_CAPT0_0~TMR_CAPT0_3 (address 0x624~0x627). Address 0x624 is lowest byte and 0x627 is highest byte.

3rd: Set Timer0 to Mode 0 and enable Timer0

Set register TMR_CTRL0 (address 0x620) [2:1] to 2b'00 to select Mode 0; Meanwhile set address 0x620[0] to 1b'1 to enable Timer0. Timer0 starts counting upward, and Tick value is increased by 1 on each positive edge of system clock until it reaches Timer0 Capture value.

5.1.3 Mode1 (GPIO Trigger Mode)

In Mode 1, GPIO is employed as clock source. The "**m0**"/"**m1**"/"**m2**" register specifies the GPIO which generates counting signal for Timer0/Timer1/Timer2.

After Timer is enabled, Timer Tick (i.e. counting value) is increased by 1 on each positive/negative (configurable) edge of GPIO from preset initial Tick value. Generally the initial Tick value is set to 0. The "**Polarity**" register specifies the GPIO edge when Timer Tick counting increases.

Note: Refer to Section 7.1.2 for corresponding "m0", "m1", "m2" and "Polarity" register address.

Once current Timer Tick value matches the preset Timer Capture (i.e. timing value), an interrupt is generated and timer stops counting.

Steps of setting Timer1 for Mode 1 is taken as an example.

1st: Set initial Tick value of Timer1

Set Initial value of Tick via registers TMR_TICK1_0~TMR_TICK1_3 (address 0x634~0x637). Address 0x634 is lowest byte and 0x637 is highest byte. It's recommended to clear initial Timer Tick value to 0.

2nd: Set Capture value of Timer1

Set registers TMR_CAPT1_0~TMR_CAPT1_3 (address 0x628~0x62b). Address 0x628 is lowest byte and 0x62b is highest byte.

3rd: Select GPIO source and edge for Timer1

Select certain GPIO to be the clock source via setting "m1" register.

Select positive edge or negative edge of GPIO input to trigger Timer1 Tick increment via setting "Polarity" register.

4th: Set Timer1 to Mode 1 and enable Timer1

Set address 0x620[5:4] to 2b'01 to select Mode 1; Meanwhile set address 0x620[3] to 1b'1 to enable Timer1. Timer1 starts counting upward, and Timer1 Tick value is increased by 1 on each positive/negative (specified during the 3rd step) edge of GPIO until it reaches Timer1 Capture value.

5.1.4 Mode2 (GPIO Pulse Width Mode)

In Mode 2, system clock is employed as the unit to measure the width of GPIO pulse. The "m0"/"m1"/"m2" register specifies the GPIO which generates control signal for Timer0/Timer1/Timer2.

After Timer is enabled, Timer Tick is triggered by a positive/negative (configurable) edge of GPIO pulse. Then Timer Tick (i.e. counting value) is increased by 1 on each positive edge of system clock from preset initial Tick value. Generally the initial Tick value is set to 0. The "**Polarity**" register specifies the GPIO edge when Timer Tick starts counting.

Note: Refer to Section 7.1.2 for corresponding "m0", "m1", "m2" and "Polarity" register address.

While a negative/positive edge of GPIO pulse is detected, an interrupt is generated and timer stops counting. The GPIO pulse width could be calculated in terms of tick count and period of system clock.

Steps of setting Timer2 for Mode 2 is taken as an example.

1st: Set initial Timer2 Tick value

Set Initial value of Tick via registers TMR_TICK2_0~TMR_TICK2_3 (address 0x638~0x63b). Address 0x638 is lowest byte and 0x63b is highest byte. It's recommended to clear initial Timer Tick value to 0.

2nd: Select GPIO source and edge for Timer2

Select certain GPIO to be the clock source via setting "m2" register.

Select positive edge or negative edge of GPIO input to trigger Timer2 counting start via setting "Polarity" register.

3rd: Set Timer2 to Mode 2 and enable Timer2

Set address 0x620[7:6] to 2b'01 and address 0x621 [0] to 1b'1.

Timer2 Tick is triggered by a positive/negative (specified during the 2nd step) edge of GPIO pulse. Timer2 starts counting upward and Timer2 Tick value is increased by 1 on each positive edge of system clock.

While a negative/positive edge of GPIO pulse is detected, an interrupt is generated and Timer2 tick stops.

4th: Read current Timer2 Tick value to calculate GPIO pulse width

Read current Timer2 Tick value from address 0x638~0x63b.

Then GPIO pulse width is calculated as follows:

GPIO pulse width = System clock period * (current Timer2 Tick – intial Timer2 Tick)

For initial Timer2 Tick value is set to the recommended value of 0, then:

GPIO pulse width = System clock period * current Timer2 Tick.

5.1.5 Mode3 (Tick Mode)

In Mode 3, system clock is employed.

After Timer is enabled, Timer Tick starts counting upward, and Timer Tick value is increased by 1 on each positive edge of system clock.

This mode could be used as time indicator. There will be no interrupt generated. Timer Tick keeps rolling from 0 to 0xffffffff. When Timer tick overflows, it returns to 0 and starts counting upward again.

Steps of setting Timer0 for Mode 3 is taken as an example.

1st: Set initial Tick value of Timer0

Set Initial value of Tick via address 0x630~0x633. Address 0x630 is lowest byte and address 0x633 is highest byte. It's recommended to clear initial Timer Tick value to 0.

2nd: Set Timer0 to Mode 3 and enable Timer0

Set address 0x620[2:1] to 2b'11 to select Mode 3, meanwhile set address 0x620[0] to 1b'1 to enable Timer0. Timer0 Tick starts to roll.

3rd: Read current Timer0 Tick value

Current Timer0 Tick value can be read from address 0x630~0x633.

5.1.6 Watchdog

Programmable watchdog could reset chip from unexpected hang up or malfunction.

Only Timer2 supports Watchdog.

Timer2 Tick has 32bits. Watchdog Capture has only 14bits, which consists of TMR_CTRL2 (address 0x622) [6:0] as higher bits and TMR_CTRL1 (address 0x621) [7:1] as lower bits. Chip will be reset when the Timer2 Tick[31:18] matches Watch dog capture.

1st: Clear Timer2 Tick value

Clear registers TMR_TICK2_0 ~TMR_TICK2_3 (address 0x638~0x63b). Address 0x638 is lowest byte and 0x63b is highest byte.

2nd: Enable Timer2

Set register TMR_CTRL0 (address 0x620) [6] to 1b'1 to enable Timer2.

3rd: Set 14-bit Watchdog Capture value and enable Watchdog

Set address 0x622[6:0] as higher bits of watchdog capture and 0x621[7:1] as lower bits. Meanwhile set address 0x622[7] to 1b'1 to enable Watchdog.

Then Timer2 Tick starts counting upwards from 0.

If bits[31:18] of Timer2 Tick value read from address 0x638~0x63b reaches watchdog capture, the chip will be reset, and the status bit in address 0x72[0] will be set as 1b'1 automatically. User can read the watchdog status bit after chip reset to check if the reset source is watchdog, and needs to write 1b'1 to this bit to manually clear the flag.

5.2 32K LTIMER

The TLSR8359 also supports a low frequency (32kHz) LTIMER in suspend mode or deep sleep mode. This timer can be used as one kind of wakeup source.

5.3 System Timer

The TLSR8359 also supports a System Timer. As introduced in section **4.3.1 System Timer clock**, the clock frequency for System Timer is fixed as 16MHz irrespective of system clock.

In suspend mode, both System Timer and Timer0~Timer2 stop counting, and 32K Timer starts counting. When the chip restores to active mode, Timer0~Timer2 will continue counting from the number when they stops; In contrast, System Timer will continue counting from an adjusted number which is a sum of the number when it stops and an offset calculated from the counting value of 32K Timer during suspend mode.

Address	Mnemonic	R/W	Function	Default Value
0x740	SYS_TIMER0	R/W	[7:3]	0x00
0x741	SYS_TIMER1	R/W	[7:0]	0x00
0x742	SYS_TIMER2	R/W	[7:0]	0x00
0x743	SYS_TIMER3	R/W	[7:0] System timer counter, write to set initial value.	0x00

Table 5-2 Register table for System Timer

Address	Mnemonic	R/W	Function	Default Value
			This is the sys timer counter	
0x74c	SYS_TIMER_CTRL O	R/W	 [7]:cal 32k enable (16 cycles 32k, count sys clock cycles) [6]:1:at the pos of 32k clock to set 32k timer value [5]:suspend bypass system_timer module [4]:system timer ss enable [3] manual set 32k timer mode [2]:manual set 32k timer 1:write, 0: read [1]:irq mask 1: enable, 0: disable [0] rsvd 	0x90
0x74f	SYS_TIMER_CTRL 1		 [1]: timer_en, System Timer busy [2]: rsvd (clk32k_tm) [3]: m_wr_32k_en, busy reading/writing 32k Timer manually [7:4]: rsvd (ss) 	0x00

***Note:** The lower three bits of address 0x740 is invalid, therefore, the resolution should be 0.5us.

6 Interrupt System

6.1 Interrupt structure

The interrupting function is applied to manage dynamic program sequencing based on realtime events triggered by timers, pins and etc.

For the TLSR8359, there are 24 interrupt sources in all: 16 types are level-triggered interrupt sources (listed in address 0x640~0x641) and 8 types are edge-triggered interrupt sources (listed in address 0x642).

When CPU receives an interrupt request (IRQ) from some interrupt source, it will determine whether to respond to the IRQ. If CPU decides to respond, it pauses current routine and starts to execute interrupt service subroutine. Program will jump to certain code address and execute IRQ commands. After finishing interrupt service subroutine, CPU returns to the breakpoint and continues to execute main function.

6.2	Register configuration
-----	-------------------------------

	Ta	ble 6- 1	Register table for Interrupt system	
Address	Mnemonic	Туре	Description	Reset Value
0x640	MASK_0	RW	Byte 0 interrupt mask, level-triggered type {irq_mix, irq_uart, irq_dfifo, irq_dma, usb_pwdn, time2, time1, time0} [7] irq_mix, i.e. irq_host_cmd [6] irq_uart [5] irq_dfifo [4] irq_dma [3] usb_pwdn [2] time2 [1] time1 [0] time0	0x00
0x641	MASK_1	RW	Byte 1 interrupt mask, level-triggered type {rsvd, irq_pwm, irq_zb_rt, irq_udc[4:0]} [7] rsvd [6] irq_pwm [5] irq_zb_rt [4] irq_udc[4] [3] irq_udc[3] [2] irq_udc[2] [1] irq_udc[1] [0] irq_udc[0]	0x00
0x642	MASK_2	RW	Byte 2 interrupt mask, edge-triggered type {rsvd, gpio2risc[1:0], irq_stimer, pm_irq, irq_gpio, usb_reset, usb_250us} [7] rsvd [6] gpio2risc[1] [5] gpio2risc[0] [4] irq_stimer [3] pm_irq_tm	0x00

Г

Datasheet for Telink TLSR8359

Address	Mnemonic	Туре	Description	Reset Value	
			[2] irq_gpio		
			[1] usb_reset		
			[0] usb_250us		
0			[0] interrupt enable	000	
0x643	IRQMODE	RW	[1] reserved (Multi-Address enable)	0x00	
0		D) 4/	Byte 0 of priority	000	
0x644	PRIO_0	RW	1: High priority; 0: Low priority	0x00	
0x645	PRIO_1	RW	Byte 1 of priority	0x00	
0x646	PRIO_2	RW	Byte 2 of priority	0x00	
0x648	IRQSRC_0	R	Byte 0 of interrupt source	0x00	
0x649	IRQSRC_1	R	Byte 1 of interrupt source	0x00	
0x64a	IRQSRC_2	R	Byte 2 of interrupt source	0x00	

6.2.1 Enable/Mask interrupt sources

Various interrupt sources could be enabled or masked by registers MASK_0~MASK_2 (address 0x640~0x642).

Interrupt sources of level-triggered type:

- irq_mix (0x640[7]): I2C Slave mapping mode or SPI Slave interrupt (irq_host_cmd)
- ♦ irq_uart (0x640[6]): UART interrupt
- ♦ irq_dfifo (0x640[5]): DFIFO interrupt
- ♦ irq_dma (0x640[4]): DMA interrupt
- ♦ usb_pwdn (0x640[3]): USB Host has sent power down signal
- time2, time1, timer0 (0x640[2]~0x640[0]): Timer2~Timer0 interrupt
- ♦ irq_pwm (0x641[6]): PWM interrupt
- ♦ irq_zb_rt (0x641[5]): Baseband interrupt

Interrupt sources of edge-triggered type:

- gpio2risc[1:0] (0x642[6]~0x642[5]): gpio2risc[1]~gpio2risc[0] interrupt, please refer to section
 7.1.2.
- ♦ irq_stimer (0x642[4]): System timer interrupt
- pm_irq_tm (0x642[3]): 32kHz timer wakeup interrupt
- ♦ irq_gpio (0x642[2]): GPIO interrupt, please refer to section 7.1.2.
- ♦ usb_reset (0x642[1]): USB Host has sent reset command.
- ♦ usb_250us (0x642[0]): USB has been in idle for 250us.

6.2.2 Interrupt mode and priority

Interrupt mode is typically-used mode. Register IRQMODE (address 0x643)[0] should be set as 1b'1 to enable interrupt function.

IRQ tasks could be set as High or Low priority via registers PRIO_0~PRIO_2 (address 0x644~0x646). When more than one interrupt sources assert interrupt requests at the same time, CPU will respond depending on respective interrupt priority levels. It's recommended not to modify priority setting.

6.2.3 Interrupt source flag

Three bytes in registers IRQSRC_0~IRQSRC_2 (address 0x648~0x64a) serve to indicate IRQ sources. Once IRQ occurs from certain source, the corresponding IRQ source flag will be set as "1". User could identify IRQ source by reading address 0x648~0x64a.

When handling edge-triggered type interrupt, the corresponding IRQ source flag needs to be cleared via address 0x64a. Take the interrupt source usb_250us for example: First enable the interrupt source by setting address 0x642 bit[0] as 1b'1; then set address 0x643 bit[0] as 1b'1 to enable the interrupt. In interrupt handling function, 24-bit data is read from address 0x648~0x64a to check which IRQ source is valid; if data bit[16] is 1, it means the usb_250us IRQ source is valid. Clear this interrupt source by setting address 0x64a bit[0] as 1b'1.

As for level-type interrupt, IRQ interrupt source status needs to be cleared by setting corresponding module status register. Take Timer0 IRQ interrupt source for example: First enable the interrupt source by setting address 0x640 bit[0] as 1b'1; then set address 0x643 bit[0] as 1b'1 to enable the interrupt. In interrupt handling function, 24-bit data is read from address 0x648~0x64a to check which IRQ source is valid; if data bit[0] is 1, it means the Timer0 IRQ source is valid. Register TMR_STATUS (address 0x623) [0] should be written with 1b'1 to manually clear Timer0 status (refer to section **5.1.1 Register table**).

٦

7 Interface

7.1 GPIO

The TLSR8359ET48, TLSR8359F512ET32 and TLSR8359F64ES16 support up to 32, 17 and 2 GPIOs respectively. All digital IOs can be used as general purpose IOs.

The GPIOs including PA<0>~PD<7> have configurable pull-up/pull-down resistor. Please refer to section 7.1.3 Pull-up/Pull-down resistor for details.

7.1.1 Basic configuration

7.1.1.1 GPIO lookup table

Т

	D. f h		Pad Funct	ion Mux		GPIO Setting						
Pin	Default function	Register=2	Register=1	Register=0	Register	Input (R)	IE	OEN	Output	Polarity	DS	Act as GPIO
PWM0_N/ UART_RX/ PA<0>	GPIO	UART_RX	PWM0_N	/	0x5a8[1:0]	0x580[0]	0x581[0]	0x582[0]	0x583[0]	0x584[0]	0x585[0]	0x586[0]
PA<1>	GPIO	/	/	/	0x5a8[3:2]	0x580[1]	0x581[1]	0x582[1]	0x583[1]	0x584[1]	0x585[1]	0x586[1]
DM/ PA<5>	GPIO	/	/	DM	0x5a9[3:2]	0x580[5]	0x581[5]	0x582[5]	0x583[5]	0x584[5]	0x585[5]	0x586[5]
DP(SWS)/ PA<6>	GPIO	/	/	DP(SWS)	0x5a9[5:4]	0x580[6]	0x581[6]	0x582[6]	0x583[6]	0x584[6]	0x585[6]	0x586[6]
SWS/ UART_RTS/ PA<7>	SWS	/	UART_RTS	sws	0x5a9[7:6]	0x580[7]	0x581[7]	0x582[7]	0x583[7]	0x584[7]	0x585[7]	0x586[7]
PWM3/ UART_RX/ ATSEL1/ sar_aio<0>/ PB<0>	GPIO	ATSEL1	UART_RX	PWM3	0x5aa[1:0]	0x588[0]	afe_0xbd [0]	0x58a[0]	0x58b[0]	0x58c[0]	afe_0xbf [0]	0x58e[0]
PWM4/ UART_TX/ ATSEL2/ lc_comp_ain<1>/ sar_aio<1>/ PB<1>	GPIO	ATSEL2	UART_TX	PWM4	0x5aa[3:2]	0x588[1]	afe_0xbd [1]	0x58a[1]	0x58b[1]	0x58c[1]	afe_0xbf [1]	0x58e[1]
PWM5/ UART_CTS/ RX_CYC2LNA/ lc_comp_ain<2>/ sar_aio<2>/ PB<2>	GPIO	RX_CYC2LNA	UART_CTS	PWM5	0x5aa[5:4]	0x588[2]	afe_0xbd [2]	0x58a[2]	0x58b[2]	0x58c[2]	afe_0xbf [2]	0x58e[2]

Table 7-1GPIO lookup table 1

			Pad Funct	ion Mux		GPIO Setting						
Pin	Default function	Register=2	Register=1	Register=0	Register	Input (R)	IE	OEN	Output	Polarity	DS	Act as GPIO
PWM0_N/												
UART_RTS/												
TX_CYC2PA/		TV 01/00 D 1				0.500[0]	afe_0xbd	0.50.(0)	0.501(0)	0.50.(0)	afe_0xbf	0.50.(0)
lc_comp_ain<3>/	GPIO	TX_CYC2PA	UART_RTS	PWM0_N	0x5aa[7:6]	0x588[3]	[3]	0x58a[3]	0x58b[3]	0x58c[3]	[3]	0x58e[3]
sar_aio<3>/												
PB<3>												
PWM4/												
lc_comp_ain<4>/							afe_0xbd				afe_0xbf	
sar_aio<4>/	GPIO	/	PWM4	/	0x5ab[1:0]	0x588[4]	[4]	0x58a[4]	0x58b[4]	0x58c[4]	[4]	0x58e[4]
PB<4>												
PWM5/												
lc_comp_ain<5>/							afe_0xbd				afe_0xbf	
sar_aio<5>/	GPIO	/	PWM5	/	0x5ab[3:2]	0x588[5]	[5]	0x58a[5]	0x58b[5]	0x58c[5]	[5]	0x58e[5]
PB<5>												
SPI_DI/												
UART_RTS/												
lc_comp_ain<6>/	SPI_DI	UART_RTS	SPI_DI	/	0x5ab[5:4]	0x588[6]	afe_0xbd	0x58a[6]	0x58b[6]	0x58c[6]	afe_0xbf	0x58e[6]
sar_aio<6>/							[6]				[6]	
- PB<6>												
SPI_DO/												
UART_RX/												
lc_comp_ain<7>/	SPI_DO	UART_RX	SPI_DO	/	0x5ab[7:6]	0x588[7]	afe_0xbd	0x58a[7]	0x58b[7]	0x58c[7]	afe_0xbf	0x58e[7]
sar_aio<7>/	_	_	_				[7]				[7]	
- PB<7>												
I2C_SDA/												
PWM4_N/												
UART_RTS/	GPIO	UART_RTS	PWM4_N	I2C_SDA	0x5ac[1:0]	0x590[0]	afe_0xc0	0x592[0]	0x593[0]	0x594[0]	afe_0xc2	0x596[0]
PGA_P0/		_	_	_			[0]				[0]	
PC<0>												
I2C_SCK/												
PWM1_N/												
PWM0/	GPIO	PWM0	PWM1_N	I2C_SCK	0x5ac[3:2]	0x590[1]	afe_0xc0	0x592[1]	0x593[1]	0x594[1]	afe_0xc2	0x596[1]
PGA_N0/			_				[1]				[1]	
PC<1>												
PWM0/												
UART_TX/												
I2C_SDA/							afe_0xc0				afe_0xc2	
XC32K_O/	GPIO	I2C_SDA	UART_TX	PWM0	0x5ac[5:4]	0x590[2]	[2]	0x592[2]	0x593[2]	0x594[2]	[2]	0x596[2]
PGA_P1/												
PC<2>												
PWM1/												
UART_RX/												
I2C_SCK/							afe_0xc0				afe_0xc2	
XC32K_I/	GPIO	I2C_SCK	UART_RX	PWM1	0x5ac[7:6]	0x590[3]	[3]	0x592[3]	0x593[3]	0x594[3]	[3]	0x596[3]
PGA_N1/												
PC<3>												
	1	1	1	1	1	1	1	1	1	1	1	1

DS-TLSR8359-E5

	Defeat		Pad Funct	ion Mux		GPIO Setting						
Pin	Default function	Register=2	Register=1	Register=0	Register	Input (R)	IE	OEN	Output	Polarity	DS	Act as GPIO
PWM2/ UART_CTS/ PWM0_N/ sar_aio<8>/ PC<4>	GPIO	PWM0_N	UART_CTS	PWM2	0x5ad[1:0]	0x590[4]	afe_0xc0 [4]	0x592[4]	0x593[4]	0x594[4]	afe_0xc2 [4]	0x596[4]
PWM3_N/ UART_RX/ ATSELO/ sar_aio<9>/ PC <s></s>	GPIO	ATSELO	UART_RX	PWM3_N	0x5ad[3:2]	0x590[5]	afe_0xc0 [5]	0x592[5]	0x593[5]	0x594[5]	afe_0xc2 [5]	0x596[5]
RX_CYC2LNA/ ATSEL1/ PWM4_N/ PC<6>	GPIO	PWM4_N	ATSEL1	RX_CYC2LNA	0x5ad[5:4]	0x590[6]	afe_0xc0 [6]	0x592[6]	0x593[6]	0x594[6]	afe_0xc2 [6]	0x596[6]
TX_CYC2PA/ ATSEL2/ PWM5_N/ PC<7>	GPIO	PWM5_N	ATSEL2	TX_CYC2PA	0x5ad[7:6]	0x590[7]	afe_0xc0 [7]	0x592[7]	0x593[7]	0x594[7]	afe_0xc2 [7]	0x596[7]
RX_CYC2LNA/ UART_TX/ PD<0>	GPIO	UART_TX	/	RX_CYC2LNA	0x5ae[1:0]	0x598[0]	0x599[0]	0x59a[0]	0x59b[0]	0x59c[0]	0x59d[0]	0x59e[0]
TX_CYC2PA/ UART_CTS/ PD<1>	GPIO	UART_CTS	/	TX_CYC2PA	0x5ae[3:2]	0x598[1]	0x599[1]	0x59a[1]	0x59b[1]	0x59c[1]	0x59d[1]	0x59e[1]
SPI_CN/ PWM3/ PD<2>	SPI_CN	PWM3	/	SPI_CN	0x5ae[5:4]	0x598[2]	0x599[2]	0x59a[2]	0x59b[2]	0x59c[2]	0x59d[2]	0x59e[2]
PWM1_N/ UART_TX/ PD<3>	GPIO	UART_TX	/	PWM1_N	0x5ae[7:6]	0x598[3]	0x599[3]	0x59a[3]	0x59b[3]	0x59c[3]	0x59d[3]	0x59e[3]
SWM/ PWM2_N/ PD<4>	GPIO	PWM2_N	/	SWM	0x5af[1:0]	0x598[4]	0x599[4]	0x59a[4]	0x59b[4]	0x59c[4]	0x59d[4]	0x59e[4]
PWM0/ PWM0_N/ PD<5>	GPIO	PWM0_N	/	PWM0	0x5af[3:2]	0x598[5]	0x599[5]	0x59a[5]	0x59b[5]	0x59c[5]	0x59d[5]	0x59e[5]
SPI_CK/ UART_TX/ PD<7>	SPI_CK	UART_TX	/	SPI_CK	0x5af[7:6]	0x598[7]	0x599[7]	0x59a[7]	0x59b[7]	0x59c[7]	0x59d[7]	0x59e[7]
MSDO/PE<0>	MSDO	/	/	MSDO		0x5a0[0]	0x5a1[0]	0x5a2[0]	0x5a3[0]		0x5a5[0]	0x5a6[0]
MCLK/PE<1>	MCLK	/	/	MCLK		0x5a0[1]	0x5a1[1]	0x5a2[1]	0x5a3[1]		0x5a5[1]	0x5a6[1]
MSCN/PE<2>	MSCN	/	/	MSCN		0x5a0[2]	0x5a1[2]	0x5a2[2]	0x5a3[2]		0x5a5[2]	0x5a6[2]
MSDI/PE<3>	MSDI	/	/	MSDI		0x5a0[3]	0x5a1[3]	0x5a2[3]	0x5a3[3]		0x5a5[3]	0x5a6[3]

*Notes:

(1) IE: Input enable, high active. 1: enable input, 0: disable input.

DS-TLSR8359-E5

- (2) OEN: Output enable, low active. 0: enable output, 1: disable output.
- (3) Register: Configure multiplexed functions in "Pad Function Mux" column.
- (4) Output: configure GPO output.
- (5) Input: read GPI input.
- (6) DS: Drive strength. Default: 1 (high DS level).
- (7) Act as GPIO: enable (1) or disable (0) GPIO function.
- (8) Polarity: see section 7.1.2 Connection relationship between GPIO and related modules.
- (9) Priority: "Act as GPIO" has the highest priority. To configure as multiplexed function, disable GPIO function first.
- (10) afe_0xbd, afe_0xbf, afe_0xc0 and afe_0xc2 marked in red color are analog registers; others are digital registers.
- (11) For all unused GPIOs, corresponding "IE" must be set as 0.
- (12) When SWS/PA<7> "IE" is set as 1, this pin must be fixed as pull-up/pull-down state (float state is not allowed).
- (13) To use SAR ADC/low power comparator/PGA pin function, please refer to corresponding module sections.

7.1.1.2 Multiplexed functions

Each pin listed in Table 7-1 acts as the function in the "Default Function" column by default.

- \diamond PA<7> acts as SWS function by default.
- ♦ PB<6:7>, PD<2,7> act as SPI function by default.
- ♦ PE<0:3> act as MSPI function by default.
- ♦ The other digital IOs act as GPIO function by default.

If a pin with multiplexed functions does not act as GPIO function by default, to use it as GPIO, first set the bit in "Act as GPIO" column as 1b'1. After GPIO function is enabled, if the pin is used as output, both the bits in "IE" and "OEN" columns should be set as 1b'0, then set the register value in the "Output" column; if the pin is used as input, both the bits in "IE" and "OEN" columns should be set as 1b'1, and the input data can be read from the register in the "Input" column.

To use a pin as certain multiplexed function (neither the default function nor GPIO function), first clear the bit in "Act as GPIO" column to disable GPIO function, and then configure "Register" in "Pad Function Mux" column to enable multiplexed function correspondingly.

Example 1: PWM0_N/ UART_RX/ PA<0>.

- (1) The pin acts as GPIO function by default.
- ♦ If the pin is used as general output, both address 0x581[0] (IE) and 0x582[0] (OEN) should be set as 1b'0, then configure address 0x583[0] (Output).
- ☆ If the pin is used as general input, both address 0x581[0] (IE) and 0x582[0] (OEN) should be set as 1b'1, and the input data can be read from address 0x580[0] (Input).
- (2) To use the pin as PWM0_N function, address 0x586[0] (Act as GPIO) should be set as 1b'0, and 0x5a8[1:0] (Register) should be set as 2b'01.
- (3) To use the pin as UART_RX function, address 0x586[0] (Act as GPIO) should be set as 1b'0, and 0x5a8[1:0] (Register) should be set as 2b'10.

Example 2: SWS/ UART_RTS/ PA<7>.

- (1) The pin acts as SWS function by default.
- (2) To use it as GPIO function, first set address 0x586[7] (Act as GPIO) as 1b'1.
- ♦ If the pin is used as general output, both address 0x581[7] (IE) and 0x582[7] (OEN) should be set as 1b'0, then configure address 0x583[7] (Output).
- ☆ If the pin is used as general input, both address 0x581[7] (IE) and 0x582[7] (OEN) should be set to 1b'1, and the input data can be read from address 0x580[7] (Input).
- (3) To use it as UART_RTS function, set address 0x586[7] (Act as GPIO) as 1b'0, and set 0x5a9[7:6] (Register) to 2b'01.

I2C can also be multiplexed with SPI interface, i.e. I2C_SDA/I2C_SCK can be multiplexed with SPI_DI (DI)/SPI_CK (CK) respectively.

To select multiplexed SPI/I2C function, please follow the steps below:

- 1) Disable GPIO function by setting corresponding "Act as GPIO" as 1b'0.
- 2) Select SPI/I2C function by setting corresponding "Register".
- 3) Address 0x5b6[7:4] serve to select SPI or I2C output.
- 4) Address 0x5b7[7:0] serve to select SPI input or I2C input.

Pin with multiplexed SPI/I2C	Act as GPIO	Register	SPI Input Select	I2C Input Select	SPI/I2C Output Select
SPI_DI/UART_RTS/lc_comp_ain<6>/sar_aio<6>/PB<6>	0x58e[6]=0 Disable GPIO	0x5ab[5:4]=1 Select SPI_DI (I2C_SDA) (default function)	5b7[2] 1: as SPI input. 0: not as SPI input.	5b7[6] 1: as I2C input. 0: not as I2C input.	Ox5b6[6] 1: as SPI/I2C output 0: not as SPI/I2C output
SPI_CK/UART_TX/PD<7>	0x59e[7] =0 Disable GPIO	Ox5af[7:6] =0 Select SPI_CK (I2C_SCK) (default function)	5b7[3] 1: as SPI input. 0: not as SPI input.	5b7[7] 1: as I2C input. 0: not as I2C input.	Ox5b6[7] 1: as SPI/I2C output 0: not as SPI/I2C output

7.1.1.3 Drive strength

The registers in the "DS" column are used to configure the corresponding pin's driving strength: "1" indicates maximum drive level, while "0" indicates minimal drive level.

The "DS" configuration will take effect when the pin is used as output. It's set as the strongest driving level by default. In actual applications, driving strength can be decreased to lower level if necessary.

- ♦ PA<5:7>, PB<0:3>: maximum=8mA ("DS"=1), minimum=4mA ("DS"=0)
- ♦ PB<4:7>: maximum=16mA ("DS"=1), minimum=12mA ("DS"=0)
- ♦ Other GPIOs (PA<0:1>, PC<0:7>, PD<0:5>, PD<7>, PE<0:3>): maximum=4mA ("DS"=1), minimum=2mA ("DS"=0)

7.1.2 Connection relationship between GPIO and related modules

GPIO can be used to generate GPIO interrupt signal for interrupt system, counting or control signal for Timer/Counter module, or GPIO2RISC interrupt signal for interrupt system.

For the "Exclusive Or (XOR)" operation result for input signal from any GPIO pin and respective "Polarity" value, on one hand, it takes "And" operation with "irq" and generates GPIO interrupt request signal; on the other hand, it takes "And" operation with "m0/m1/m2", and generates counting signal in Mode 1 or control signal in Mode 2 for Timer0/Timer1/Timer2, or generates GPIO2RISC[0]/GPIO2RISC[1] interrupt request signal.

GPIO interrupt request signal = | ((input ^ polarity) & irq);

Counting (Mode 1) or control (Mode 2) signal for Timer0 = | ((input ^ polarity) & m0);

Counting (Mode 1) or control (Mode 2) signal for Timer1 = | ((input ^ polarity) & m1);

Counting (Mode 1) or control (Mode 2) signal for Timer2 = | ((input ^ polarity) & m2);

GPIO2RISC[0] interrupt request signal = | ((input ^ polarity) & m0);

GPIO2RISC[1] interrupt request signal = | ((input ^ polarity) & m1).

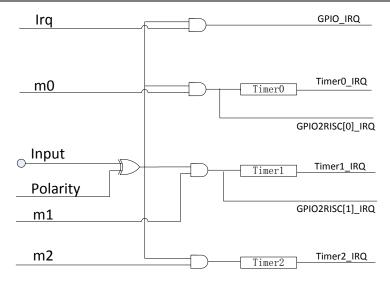


Figure 7-1 Logic relationship between GPIO and related modules

Please refer to Table 7-3 and Table 6-1 to learn how to configure GPIO for interrupt system or Timer/Counter (Mode 1 or Mode 2).

- (1) First enable GPIO function, enable IE and disable OEN. Please see section **7.1.1 Basic** configuration .
- (2) GPIO IRQ signal:

Select GPIO interrupt trigger edge (positive edge or negative edge) via configuring "**Polarity**", and set corresponding GPIO interrupt enabling bit "**Irq**".

Then set address 0x5b5[3] (irq_enable) to enable GPIO IRQ.

Finally enable GPIO interrupt (irq_gpio) via address 0x642[2].

User can read addresses 0x5e0 ~ 0x5e3 to see which GPIO asserts GPIO interrupt request signal. Note: 0x5e0[7:0] --> PA<7>~PA<0>, 0x5e1[7:0] --> PB<7>~PB<0>, 0x5e2[7:0] --> PC<7>~PC<0>, 0x5e3[7:0] --> PD<7>~PD<0>.

(3) Timer/Counter counting or control signal:

Configure **"Polarity"**. In Timer Mode 1, it determines GPIO edge when Timer Tick counting increases. In Timer Mode 2, it determines GPIO edge when Timer Tick starts counting.

Then set "**m0/m1/m2**" to specify the GPIO which generates counting signal (Mode 1)/control signal (Mode 2) for Timer0/Timer1/Timer2.

User can read addresses 0x5e8~0x5eb/0x5f0~0x5f3/0x5f8~0x5fb to see which GPIO asserts counting signal (in Mode 1) or control signal (in Mode 2) for Timer0/Timer1/Timer2. Note: Timer0: 0x5e8[7:0] --> PA<7>~PA<0>, 0x5e9[7:0] --> PB<7>~PB<0>, 0x5ea[7:0] --> PC<7>~PC<0>, 0x5eb[7:0] --> PD<7>~PD<0>; Timer1: 0x5f0[7:0] --> PA<7>~PA<0>, 0x5f1[7:0] --> PB<7>~PB<0>, 0x5f2[7:0] --> PC<7>~PC<0>, 0x5f3[7:0] --> PA<7>~PA<0>, 0x5f2[7:0] --> PB<7>~PD<0>; Timer2: 0x5f8[7:0] --> PA<7>~PA<0>, 0x5f9[7:0] --> PD<7>~PD<0>; Timer2: 0x5f8[7:0] --> PA<7>~PA<0>, 0x5f9[7:0] --> PB<7>~PD<0>; Ox5fa[7:0] --> PC<7>~PC<0>, 0x5fa[7:0] --> PC<7>~PC<0>, 0x5fa[7:0] --> PC<7>~PC<0>, 0x5fa[7:0] --> PC<7>~PC<0>, 0x5fb[7:0] --> PC<7>~PC<0>, 0x5fa[7:0] --> PC<7>~PC<0>, 0x5fb[7:0] --> PC<7>~PC<0>, 0x5fb[7:0] --> PC<7>~PC<0>, 0x5fb[7:0] --> PC<7>~PC<0>, 0x5fb[7:0] --> PC<7>~PD<0>.

(4) GPIO2RISC IRQ signal:

Select GPIO2RISC interrupt trigger edge (positive edge or negative edge) via configuring "**Polarity**", and set corresponding GPIO enabling bit "m0"/"m1".

Enable GPIO2RISC[0]/GPIO2RISC[1] interrupt, i.e. "gpio2risc[0]" (address 0x642[5]) / "gpio2risc[1]"(address 0x642[6]).

Pin	Input	Polarity 1: active low	Irq	m0	m1	m2
	(R)	0: active high				
PA<0>	0x580[0]	0x584[0]	0x587[0]	0x5b8[0]	0x5c0[0]	0x5c8[0]
PA<1>	0x580[1]	0x584[1]	0x587[1]	0x5b8[1]	0x5c0[1]	0x5c8[1]
PA<5>	0x580[5]	0x584[5]	0x587[5]	0x5b8[5]	0x5c0[5]	0x5c8[5]
PA<6>	0x580[6]	0x584[6]	0x587[6]	0x5b8[6]	0x5c0[6]	0x5c8[6]
PA<7>	0x580[7]	0x584[7]	0x587[7]	0x5b8[7]	0x5c0[7]	0x5c8[7]
PB<0>	0x588[0]	0x58c[0]	0x58f[0]	0x5b9[0]	0x5c1[0]	0x5c9[0]
PB<1>	0x588[1]	0x58c[1]	0x58f[1]	0x5b9[1]	0x5c1[1]	0x5c9[1]
PB<2>	0x588[2]	0x58c[2]	0x58f[2]	0x5b9[2]	0x5c1[2]	0x5c9[2]
PB<3>	0x588[3]	0x58c[3]	0x58f[3]	0x5b9[3]	0x5c1[3]	0x5c9[3]
PB<4>	0x588[4]	0x58c[4]	0x58f[4]	0x5b9[4]	0x5c1[4]	0x5c9[4]
PB<5>	0x588[5]	0x58c[5]	0x58f[5]	0x5b9[5]	0x5c1[5]	0x5c9[5]
PB<6>	0x588[6]	0x58c[6]	0x58f[6]	0x5b9[6]	0x5c1[6]	0x5c9[6]
PB<7>	0x588[7]	0x58c[7]	0x58f[7]	0x5b9[7]	0x5c1[7]	0x5c9[7]
PC<0>	0x590[0]	0x594[0]	0x597[0]	0x5ba[0]	0x5c2[0]	0x5ca[0]
PC<1>	0x590[1]	0x594[1]	0x597[1]	0x5ba[1]	0x5c2[1]	0x5ca[1]
PC<2>	0x590[2]	0x594[2]	0x597[2]	0x5ba[2]	0x5c2[2]	0x5ca[2]
PC<3>	0x590[3]	0x594[3]	0x597[3]	0x5ba[3]	0x5c2[3]	0x5ca[3]
PC<4>	0x590[4]	0x594[4]	0x597[4]	0x5ba[4]	0x5c2[4]	0x5ca[4]
PC<5>	0x590[5]	0x594[5]	0x597[5]	0x5ba[5]	0x5c2[5]	0x5ca[5]
PC<6>	0x590[6]	0x594[6]	0x597[6]	0x5ba[6]	0x5c2[6]	0x5ca[6]
PC<7>	0x590[7]	0x594[7]	0x597[7]	0x5ba[7]	0x5c2[7]	0x5ca[7]
PD<0>	0x598[0]	0x59c[0]	0x59f[0]	0x5bb[0]	0x5c3[0]	0x5cb[0]
PD<1>	0x598[1]	0x59c[1]	0x59f[1]	0x5bb[1]	0x5c3[1]	0x5cb[1]
PD<2>	0x598[2]	0x59c[2]	0x59f[2]	0x5bb[2]	0x5c3[2]	0x5cb[2]
PD<3>	0x598[3]	0x59c[3]	0x59f[3]	0x5bb[3]	0x5c3[3]	0x5cb[3]
PD<4>	0x598[4]	0x59c[4]	0x59f[4]	0x5bb[4]	0x5c3[4]	0x5cb[4]
PD<5>	0x598[5]	0x59c[5]	0x59f[5]	0x5bb[5]	0x5c3[5]	0x5cb[5]
PD<7>	0x598[7]	0x59c[7]	0x59f[7]	0x5bb[7]	0x5c3[7]	0x5cb[7]

7.1.3 Pull-up/Pull-down resistor

The GPIOs including PA<0>PD<7> support configurable pull-up resistor of rank x1 and x100 or pull-down resistor of rank x10 which are all disabled by default. Analog registers afe_0x0e<7:0> $afe_0x15<7:0>$ serve to control the pull-up/pull-down resistor for each GPIO.

The DP pin also supports $1.5k\Omega$ pull-up resistor for USB use. The $1.5k\Omega$ pull up resistor is disabled by default and can be enabled by setting analog register afe_0x0b<7> as 1b'1. For the DP/PA<6> pin, user can only enable either $1.5k\Omega$ pull-up resistor or pull-up resistor of rank x1/x100 / pull-down resistor of rank x10 at the same time. Please refer to Table 7- 4 for details.

Take the PA<0> for example: Setting analog register afe_0x0e<1:0> to 2b'01/2b'11/2b'10 is to respectively enable pull-up resistor of rank x100/pull-up resistor of rank x1/pull-down resistor of rank x10 for PA<0>; Clearing the two bits (default value) disables pull-up and pull-down resistor for PA<0>.

Address	Mnemonic	Default	Description
afe_0x0b<7>	dp_pullup_res_3v	0	1.5k (Typ.) pull-up resistor for USB DP PAD 0: disable
		/	1: enable
Rank		(depend on	actual application)
x1	18kohm		
x10	160kohm		
x100	1Mohm		
			PA<3:0> pull up and down select:
			<7:6>: rsvd (PA<3>)
			<5:4>: rsvd (PA<2>)
			<3:2>: PA<1>
afe_0x0e<7:0>	a_sel<7:0>	00000000	<1:0>: PA<0>
			00: Null
			01: x100 pull up
			10: x10 pull down
			11: x1 pull up
			PA<7:4> pull up and down select:
			<7:6>: PA<7>
			<5:4>: PA<6>
			<3:2>: PA<5>
afe_0x0f<7:0>	a_sel<15:8>	00000000	<1:0>: rsvd (PA<4>)
			00: Null
			01: x100 pull up
			10: x10 pull down
			11: x1 pull up
			PB<3:0> pull up and down select:
			00: Null
afe_0x10<7:0>	b_sel<7:0>	00000000	01: x100 pull up
			10: x10 pull down
			11: x1 pull up

Table 7-4Analog registers for pull-up/pull-down resistor control

Address	Mnemonic	Default	Description
			PB<7:4> pull up and down select:
			00: Null
afe_0x11<7:0>	b_sel<15:8>	00000000	01: x100 pull up
			10: x10 pull down
			11: x1 pull up
			PC<3:0> pull up and down select:
			00: Null
afe_0x12<7:0>	c_sel<7:0>	00000000	01: x100 pull up
			10: x10 pull down
			11: x1 pull up
			PC<7:4> pull up and down select:
			00: Null
afe_0x13<7:0>	c_sel<15:8>	00000000	01: x100 pull up
			10: x10 pull down
			11: x1 pull up
			PD<3:0> pull up and down select:
			00: Null
afe_0x14<7:0>	d_sel<7:0>	00000000	01: x100 pull up
			10: x10 pull down
			11: x1 pull up
			PD<7:4> pull up and down select:
			<7:6>: PD<7>
			<5:4>: rsvd (PD<6>)
			<3:2>: PD<5>
afe_0x15<7:0>	d_sel<15:8>	00000000	<1:0>: PD<4>
			00: Null
			01: x100 pull up
			10: x10 pull down
			11: x1 pull up

7.2 SWM and SWS

The TLSR8359 supports Single Wire interface. SWM (Single Wire Master) and SWS (Single Wire Slave) represent the master and slave device of the single wire communication system developed by Telink. The maximum data rate can be up to 2Mbps.

7.3 I2C

The TLSR8359 embeds I2C hardware module, which could act as Master mode or Slave mode. I2C is a popular inter-IC interface requiring only 2 bus lines, a serial data line (SDA) and a serial clock line (SCL).

7.3.1 Communication protocol

Telink I2C module supports standard mode (100kbps) and Fast-mode (400kbps) with restriction that system clock must be by at least 10x of data rate.

Two wires, SDA and SCL (SCK) carry information between Master device and Slave device connected to the bus. Each device is recognized by unique address (ID). Master device is the device which initiates a data transfer on the bus and generates the clock signals to permit that transfer. Slave device is the device addressed by a Master.

Both SDA and SCL are bidirectional lines connected to a positive supply voltage via a pull-up resister. It's recommended to use external 3.3kohm pull-up resistor. For standard mode, the internal pull-up resistor of rank x1 can be used instead of the external 3.3kohm pull-up.

When the bus is free, both lines are HIGH. It's noted that data in SDA line must keep stable when clock signal in SCL line is at high level, and level state in SDA line is only allowed to change when clock signal in SCL line is at low level.

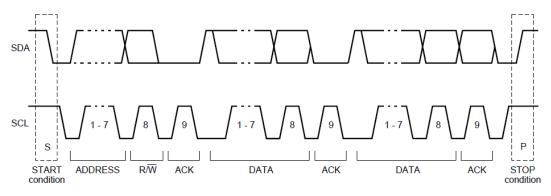


Figure 7-2 I2C timing chart

7.3.2 Register table

Address	Name	R/W	Description	Reset Value
0x00	I2CSP	RW	I2C master clock speed	0x1f
0x01	I2C_ID	RW	[7:1] I2C ID	0x5c
0x02	I2CMST	RW	[0]: master busy[1]: master packet busy[2]: master received status0 for ACK; 1 for NAK	0x00
0x03	I2CSCT0	RW	 [0]: address auto increase enable [1]: I2C master enable [2]: enable Mapping Mode [3]: r_clk_stretch_en, suspend 	0x01

Table 7- 5Register configuration for I2C

Address	Name	R/W	Description	Reset Value
			transmission by pulling SCL down to low	
			level, and continue transmission after	
			SCL is released to high level	
0x04	I2CAD	RW	[7:0] data buffer in master mode	0x5a
0x05	I2CDW	RW	[7:0] Data buffer in master mode	0xf1
0x06	I2CDR	RW	[7:0] Data buffer for Read or Write in master mode	0x00
0x07	I2CSCT1	RW	 [0]: launch ID cycle [1]: launch address cycle (send I2CAD data) [2]: launch data write cycle [3]: launch data read cycle For Master Write: 0: I2CAD&I2CDW, 1: I2CAD&I2CDW&I2CDR) To write 3 bytes: bit[3]=1; To write 2 bytes: bit[3]=0. For Master Read: always 1. [4]: launch start cycle [5]: launch stop cycle [6]: enable read ID [7]: enable ACK in read command 	0x00
0xe0	I2CMAP_HADR	R	[6:0] I2C read address	0x00
0xe1	HOSR_ADR_L	RW	Low byte of Mapping mode buffer address	0x80
0xe2	HOSR_ADR_M	RW	Middle byte of Mapping mode buffer address	0xd7
0xe3	HOSR_ADR_H	RW	High byte of Mapping mode buffer address	0x00
0xe4	I2CMAP_HOST	RW	 [0]: host_cmd_irq_o, I2C host operation has happened. Write 1 to clear. [1]: host_rd_tag_o, I2C host operation has happened and is read operation. Write 1 to clear. 	0x00

7.3.3 I2C Slave mode

I2C module of the TLSR8359 acts as Slave mode by default. I2C slave address can be configured via register I2C_ID (address 0x01) [7:1].

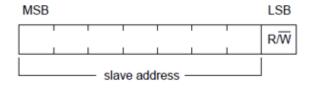
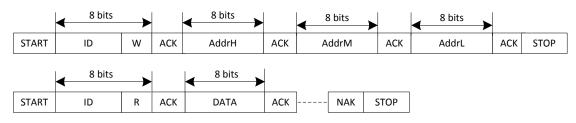


Figure 7-3 Byte consisted of slave address and R/W flag bit

I2C slave mode supports two sub modes including Direct Memory Access (DMA) mode and Mapping mode, which is selectable via address 0x03[2].


In I2C Slave mode, Master could initiate transaction anytime. I2C slave module will reply with ACK automatically. To monitor the start of I2C transaction, user could set interrupt from GPIO for SCA or SCL.

7.3.3.1 DMA mode

In DMA mode, other devices (Master) could access (read/write) designated address in Register and/or SRAM of the TLSR8359 according to I2C protocol. I2C module of the TLSR8359 will execute the read/write command from I2C master automatically. But user needs to notice that the system clock shall be at least 10x faster than I2C bit rate.

The access address designated by Master is offset by 0x800000. In the TLSR8359, Register address starts from 0x800000 and SRAM address starts from 0x840000. For example, if Addr High (AddrH) is 0x04, Addr Middle (AddrM) is 0x00, and Addr Low (AddrL) is 0xcc, the real address of accessed data is 0x8400cc.

In DMA mode, Master could read/write data byte by byte. The designated access address is initial address and it supports auto increment by setting address 0x03[0] to 1b'1.

Read Format in DMA mode

Figure 7-4 Read format in DMA mode

Write Format in DMA mode

Figure 7-5 Write format in DMA mode

7.3.3.2 Mapping mode

Mapping mode could be enabled via setting register I2CSCT0 (address 0x03)[2] to 1b'1.

In Mapping mode, data written and read by I2C master will be redirected to specified 128-byte buffer in SRAM. User could specify the initial address of the buffer by configuring registers HOSR_ADR_L (address 0xe1, lower byte), HOSR_ADR_M (address 0xe2, middle byte) and HOSR_ADR_H (address 0xe3, higher byte). The first 64-byte buffer is for written data and following 64-byte buffer is for read data. Every time the data access will start from the beginning of the Write-buffer/Read-buffer after I2C stop condition occurs. The last accessed data address could be checked in register I2CMAP_HADR (address 0xe0) [6:0] which is only updated after I2C STOP occurs.

Read Format in mapping mode

Figure 7-6 Read format in Mapping mode

Write Format in mapping mode

Figure 7-7 Write format in Mapping mode

7.3.4 I2C Master mode

Address 0x03[1] should be set to 1b'1 to enable I2C master mode for the TLSR8359.

Address 0x00 serves to set I2C Master clock: F_{I2C} = (System Clock / (4 *clock speed configured in address 0x00).

A complete I2C protocol contains START, Slave Address, R/W bit, data, ACK and STOP. Slave address could be configured via address 0x01[7:1].

I2C Master (i.e. I2C module of the TLSR8359) could send START, Slave Address, R/W bit, data and STOP cycle by configuring address 0x07. I2C master will send enabled cycles in the correct sequence.

Address 0x02 serves to indicate whether Master/Master packet is busy, as well as Master received status. Bit[0] will be set to 1 when one byte is being sent, and the bit can be automatically cleared after a start signal/ address byte/acknowledge signal/data /stop signal is sent. Bit[1] is set to 1 when the start signal is sent, and the bit will be automatically cleared after the stop signal is sent. Bit[2] indicates whether to succeed in sending acknowledgement signal.

7.3.4.1 I2C Master Write transfer

I2C Master has 3-byte buffer for write data, which are I2CAD (0x04), I2CDW (0x05) and I2CDR (0x06). Write transfer will be completed by I2C master module.

For example, to implement an I2C write transfer with 3-byte data, which contains START, Slave Address, Write bit, ack from Slave, 1st byte, ack from slave, 2nd byte, ack from slave, 3rd byte, ack from slave and STOP, user needs to configure I2C slave address to I2C_ID (0x01) [7:1], 1st byte data to I2CAD, 2nd byte data to I2CDW and 3rd byte to I2CDR. To start I2C write transfer, I2CSCT1 (0x07) is configured to 0x3f (0011 1111). I2C Master will launch START, Slave address, Write bit, load ACK to I2CMST (0x02) [2], send I2CAD data, load ACK to I2CMST[2], send I2CDW data, load ACK to I2CMST[2], send I2CDR data, load ACK to I2CMST[2] and then STOP sequentially.

For I2C write transfer whose data are more than 3 bytes, user could split the cycles according to I2C protocol.

7.3.4.2 I2C Master Read transfer

I2C Master has one byte buffer for read data, which is I2CDR (0x06). Read transfer will be completed by I2C Master.

For example, to implement an I2C read transfer with 1 byte data, which contains START, Slave Address, Read bit, Ack from Slave, 1st byte from Slave, Ack by master and STOP, user needs to configure I2C slave address to I2C_ID (0x01) [7:1]. To start I2C read transfer, I2CSCT1 (0x07) is configured to 0xf9 (1111 1001). I2C Master will launch START, Slave address, Read bit, load ACK to I2CMST (0x02) [2], load data to I2CDR, reply ACK and then STOP sequentially.

For I2C read transfer whose data are more than 1 byte, user could split the cycles according to I2C protocol.

7.3.5 I2C and SPI Usage

I2C hardware and SPI hardware modules in the chip share part of the hardware, as a result, when both hardware interfaces are used, the restrictions listed within this section need to be taken into consideration.

I2C and SPI hardware cannot be used as Slave at the same time.

The other cases are supported, including:

- ♦ I2C Slave and SPI Master can be used at the same time.
- ♦ I2C Master and SPI Slave can be used at the same time.
- ♦ I2C and SPI can be used as Master at the same time.

Please refer to corresponding SDK instructions for details.

7.4 SPI

The TLSR8359 embeds SPI (Serial Peripheral interface), which could act as Master mode or Slave mode. SPI is a high-speed, full-duplex and synchronous communication bus requiring 4 bus lines including a chip select (CS) line, a data input (DI) line, a data output (DO) line and a clock (CK) line.

7.4.1 Register table

Address	Name	R/W	Description	Reset Value
0x08	SPIDAT	RW	[7:0]: SPI data access	0x00
0x09	SPICT	RW	 [0]: mst_csn, control SPI_CSN output when SPI acts as Master [1]: enable master mode [2]: spi data output disable [3]: 1 for read command; 0 for write command [4]: address auto increase [5]: share_mode [6]: busy status 	0x11
0x0a	SPISP	RW	[6:0]: SPI clock speed [7]: SPI function mode, p_csn, p_scl, p_sda and p_sdo function as SPI if 1	0x05
0x0b	SPIMODE	RW	[0]: inverse SPI clock output0x00[1]: data delay half clk0x00	

Table 7- 6Register configuration for SPI

7.4.2 SPI Master mode

SPI for the TLSR8359 supports both master mode and slave mode and acts as slave mode by default. Address 0x09 bit[1] should be set to 1b'1 to enable SPI Master mode. Register SPISP is to configure SPI pin and clock: setting address 0x0a bit[7] to 1 is to enable SPI function mode, and corresponding pins can be used as SPI pins; SPI clock = system clock/((clock speed configured in address 0x0a bit[6:0] +1)*2).

Address 0x08 serves as the data register. One reading/writing operation of 0x08 enables the SPI_CK pin to generate 8 SPI clock cycles.

Telink SPI supports four standard working modes: Mode 0~Mode 3. Register SPIMODE (address 0x0b) serves to select one of the four SPI modes:

	Table /- / SFI	Master moue			
SPI mode	CPOL/CPHA	SPIMODE register (Address 0x0b)			
Mode 0	CPOL=0, CPHA=0	bit[0]=0, bit[1]=0			
Mode 1	CPOL=0, CPHA=1	bit[0]=0, bit[1]=1			
Mode 2	CPOL=1, CPHA=0	bit[0]=1, bit[1]=0			
Mode 3	CPOL=1, CPHA=1	bit[0]=1, bit[1]=1			
CPOL: Clock Polarity					
When CPOL=0, SPI_CLK keeps low level in idle state;					
When CPOL=1, SPI_CLK keeps high level in idle state.					
CPHA: Clock Phase					
When CPHA=0, data is sampled at the first edge of clock period					
When CPHA=1, data is sampled at the latter edge of clock period					

Table 7-7 SPI Master mode

Address 0x09 bit[0] is to control the CS line: when the bit is set to 1, the CS level is high; when the bit is cleared, the CS level is low.

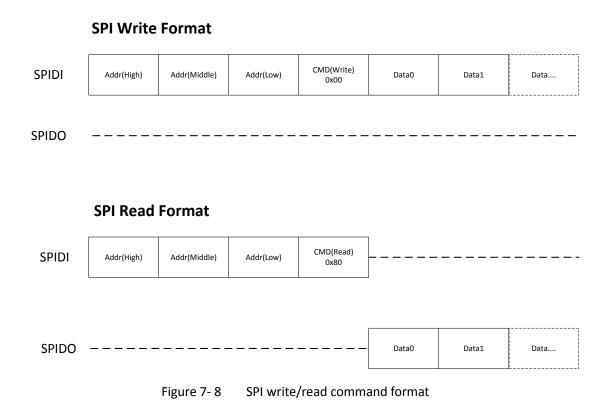
Address 0x09 bit[2] is the disabling bit for SPI Master output. When the bit is cleared, MCU writes data into address 0x08, then the SPI_DO pin outputs the data bit by bit during the 8 clock cycles generated by the SPI_CK pin. When the bit is set to 1b'1, SPI_DO output is disabled.

Address 0x09 bit[3] is the enabling bit for SPI Master reading data function. When the bit is set to 1b'1, MCU reads the data from address 0x08, then the input data from the SPI_DI pin is shifted into address 0x08 during the 8 clock cycles generated by the SPI_CK pin. When the bit is cleared, SPI Master reading function is disabled.

Address 0x09[5] is the enabling bit for share mode, i.e. whether SPI_DI and SPI_DO share one common line.

Users can read address 0x09 bit[6] to get SPI busy status, i.e. whether the 8 clock pulses have been sent.

7.4.3 SPI Slave mode


SPI for the TLSR8359 acts as slave mode by default. SPI Slave mode supports DMA. User could access registers of the TLSR8359 by SPI interface. It's noted that system clock of TLSR8359 shall be at least 5x faster than SPI clock for reliable connection. Address 0x0a should be written with data 0xa5 by the SPI host to activate SPI slave mode. SPI salve only supports Mode0 and Mode3.

SPI slave mode	CPOL/CPHA		
Mode 0	CPOL=0, CPHA=0		
Mode 3	CPOL=1, CPHA=1		
Receive data at positive edge of SPI MCLK clock.			
Send data at negative edge of SPI MCLK clock.			

Table 7-	8 SPI Slave	mode
----------	-------------	------

Address 0x09[4] is dedicated for SPI Slave mode and indicates address auto increment. SPI write command format and read command format are illustrated in Figure 7-8:

7.4.4 I2C and SPI Usage

I2C hardware and SPI hardware modules in the chip share part of the hardware, as a result, when both hardware interfaces are used, certain restrictions apply.

See Section 7.3.5 I2C and SPI Usage for detailed instructions.

7.5 UART

The TLSR8359 embeds UART (Universal Asynchronous Receiver/Transmitter) to implement full-duplex transmission and reception via UART TX and RX interface. Both TX and RX interface are 4-layer FIFO (First In First Out) interface.

Hardware flow control is supported via RTS and CTS.

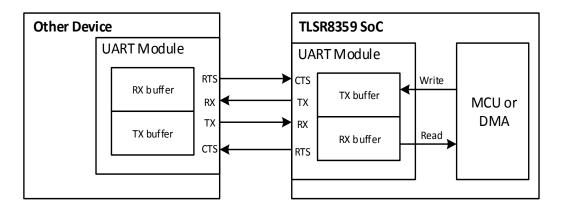


Figure 7-9 UART communication

As shown in Figure 7-9, data to be sent is first written into TX buffer by MCU or DMA, then UART module transmits the data from TX buffer to other device via pin TX. Data to be read from other device is first received via pin RX and sent to RX buffer, then the data is read by MCU or DMA.

If RX buffer of the TLSR8359 UART is close to full, the TLSR8359 will send a signal (configurable high or low level) via pin RTS to inform other device that it should stop sending data. Similarly, if the TLSR8359 receives a signal from pin CTS, it indicates that RX buffer of other device is close to full and the TLSR8359 should stop sending data.

Address	Name	R/W	Description	Reset Value
0x90	UART_DATA_BUF0	RW	write/read buffer[7:0]	0x00
0x91	UART_DATA_BUF1	RW	Write/read buffer[15:8]	0x00
0x92	UART_DATA_BUF2	RW	Write/read buffer[23:16]	0x00
0x93	UART_DATA_BUF3	RW	Write/read buffer[31:24]	0x00
0x94	UART_CLK_DIV_L	RW	[7:0]: uart clk div register uart_clk_div[7:0]	Oxff
0x95	UART_CLK_DIV_H	RW	[6:0]: uart clk div register uart_clk_div[14:8] uart_sclk = sclk/(uart_clk_div[14:0]+1) [7]: uart_clk_div[15] 1: enable clock divider, 0: disable.	0x0f
0x96	UART_CTRL0	RW	 [3:0] bwpc, bit width, should be larger than 2 Baudrate = uart_sclk/(bwpc+1) [4] rx dma enable [5] tx dma enable 	OxOf

Table 7- 9Register configuration for UART

Address	Name	R/W	Description	Reset Value
			[6] rx interrupt enable	
			[7]tx interrupt enable	
			[0] cts select, 0: cts_i, 1: cts _i inverter	
			[1]:cts enable, 1: enable, 0: disable	
			[2]:Parity, 1: enable, 0 :disable	
		514/	[3]: even Parity or odd	
0x97	UART_CTRL1	RW	[5:4]: stop bit	0x0e
			00: 1 bit, 01: 1.5bit, 1x: 2bits	
			[6]: ttl	
			[7]: uart tx, rx loopback	
			[3:0] rts trig level	
			[4] rts Parity	
0x98	UART_CTRL2	RW	[5] rts manual value	0xa5
			[6] rts manual enable	
			[7] rts enable	
			[3:0]: rx_irq_trig level	
0x99	UART_CTRL3	RW	[7:4] tx_irq_trig level	0x44
			[7:0]: R rxtimeout o[7:0]	
	UART_RXTIMEOUT_ O_L		The setting is transfer one bytes need	
		RW	cycles base on uart_clk. For example, if	0xc0
0x9a			transfer one bytes (1 start bit+8bits	
0898				
			data+1 priority bit+2 stop bits) total 12	
			bits, this register setting should be	
			(bwpc+1)*12.	
			[1:0]: R_rxtimeout_o[9:8]	
			2'b00:rx timeout time is	
			r_rxtimeout[7:0]	
			2'b01:rx timeout time is	
			r_rxtimeout[7:0]*2	
			2'b10:rx timeout time is	
			r_rxtimeout[7:0]*3	
0x9b	UART_RXTIMEOUT_	RW	3'b11: rx timeout time is	0x01
	0_Н		r_rxtimeout[7:0]*4	0,01
			R_rxtimeout is for rx dma to decide the	
			end of each transaction. Supposed the	
			interval between each byte in one	
			transaction is very short.	
			[5]: rsvd	
			[6]: mask_txdone	
			[7]: mask_err	
0x9c	UART_BUFCNT	R	[3:0]: rx_buf_cnt	0x00
0.00			[7:4]: tx_buf_cnt	0,00
			[2:0] rbcnt	
			[3] irq_o	
0x9d	UART_STATUS	R	[6:4]wbcnt	0x00
			[6] write 1 to clear rx	
			[7] rx_err, write 1 to clear tx	
0x9e	UART TXRX STATUS	R	[0] txdone	0x00

Address	Name	R/W	Description	Reset Value
			[1] tx_buf_irq	
			[2] rxdone	
			[3] rx_buf_irq	
0x9f		D	[2:0] tstate_i	0,400
0,001	0x9f UART_STATE R		[7:4] rstate_i	0x00

Addresses 0x90~0x93 serve to write data into TX buffer or read data from RX buffer.

Addresses 0x94~0x95 serve to configure UART clock.

Address 0x96 serves to set baud rate (bit[3:0]), enable RX/TX DMA mode (bit[4:5]), and enable RX/TX interrupt (bit[6:7]).

Address 0x97 mainly serves to configure CTS. Bit[1] should be set to 1b'1 to enable CTS. Bit[0] serves to configure CTS signal level. Bit[2:3] serve to enable parity bit and select even/odd parity. Bit[5:4] serve to select 1/1.5/2 bits for stop bit. Bit[6] serves to configure whether RX/TX level should be inverted.

Address 0x98 serves to configure RTS. Bit[7] and Bit[3:0] serve to enable RTS and configure RTS signal level.

Address 0x99 serves to configure the number of bytes in RX/TX buffer to trigger interrupt.

The number of bytes in RX/TX buffer can be read from address 0x9c.

7.6 USB

The TLSR8359 has a full-speed (12Mbps) USB interface for communicating with other compatible digital devices. The USB interface acts as a USB peripheral, responding to requests from a master host controller. The chip contains internal 1.5kohm pull up resistor for the DP pin, which can be enabled via analog register afe_0x0b<7>.

Telink USB interface supports the Universal Serial Bus Specification, Revision v2.0 (USB v2.0 Specification).

The chip supports 9 endpoints, including control endpoint 0 and 8 configurable data endpoints. Endpoint 1, 2, 3, 4, 7 and 8 can be configured as input endpoint, while endpoint 5 and 6 can be configured as output endpoint. In non-audio class applications, each endpoint can be configured as bulk, interrupt and iso mode. For control endpoint 0, the chip's hardware vendor command is configurable.

Optional suspend mode:

- ♦ Selectable as USB suspend mode or chip suspend mode, support remote wakeup.
- ♦ Current draw in suspend mode complied with USB v2.0 Specification.
- ♦ USB pins (DM, DP) can be used as GPIO function in suspend mode.
- Resume and detach detect: Recognize USB device by detecting the voltage on the DP pin with configurable 1.5K pull-up resistor.

♦ USB pins configurable as wakeup GPIOs.

The USB interface belongs to an independent power domain, and it can be configured to power down independently.

8 PWM

The TLSR8359 supports 6-channel PWM (Pulse-Width-Modulation) output. Each PWM#n (n=0~5) has its corresponding inverted output at PWM#n_N pin.

8.1 Register table

Address	Mnemonic	Туре	Description	Reset Value
0x780	PWM_EN	R/W	 [1]: 0disable PWM1, 1enable PWM1 [2]: 0disable PWM2, 1enable PWM2 [3]: 0disable PWM3, 1enable PWM3 [4]: 0disable PWM4, 1enable PWM4 [5]: 0disable PWM5, 1enable PWM5 	0x00
0x781	PWM_EN0	R/W	[0]: 0disable PWM0, 1enable PWM0	0x00
0x782	PWM_CLKDIV	R/W	Set PWM_clk: (PWM_CLKDIV+1)*sys_clk	0x00
0x783	PWM_MODE	R/W	[3:0]: PWM0 mode select 0000-pwm0 normal mode 0001-pwm0 count mode 0011-pwm0 IR mode 0111-pwm0 IR FIFO mode 1111-pwm0 IR DMA FIFO mode	0x00
0x784	PWM_CC0	R/W	[5:0]:1'b1 invert PWM output	0x00
0x785	PWM_CC1	R/W	[5:0]:1'b1 invert PWM_INV output	0x00
0x786	PWM_CC2	R/W	[5:0]: Signal frame polarity of PWM5~PWM0 1b'0-high level first 1b'1-low level first	0x00
0x788~ 0x793	reserved			
0x794	PWM_TCMP0	R/W	[7:0] bits 7-0 of PWM0's high time or low time(if pola[0]=1)	0x00
0x795	PWM_TCMP0 R/		[15:8] bits 15-8 of PWM0's high time or low time	0x00
0x796	PWM_TMAX0 R/V		[7:0] bits 7-0 of PWM0's cycle time	0x00
0x797	PWM_TMAX0	R/W	[15:8] bits 15-8 of PWM0's cycle time	0x00
0x798	PWM_TCMP1	R/W	[7:0] bits 7-0 of PWM1's high time	0x00

Table 8-1 Register table for PWM

Address	Mnemonic	Туре	Description	Reset Value
			or low time(if pola[1]=1)	
0x799	PWM_TCMP1	R/W	[15:8] bits 15-8 of PWM1's high	0x00
00755		10,00	time or low time	0,00
0x79a	PWM_TMAX1	R/W	[7:0] bits 7-0 of PWM1's cycle time	0x00
0x79b	PWM_TMAX1	R/W	[15:8] bits 15-8 of PWM1's cycle time	0x00
0x79c	PWM_TCMP2	R/W	[7:0] bits 7-0 of PWM2's high time or low time(if pola[2]=1)	0x00
0x79d	PWM_TCMP2	R/W	[15:8] bits 15-8 of PWM2's high time or low time	0x00
0x79e	PWM TMAX2	R/W	[7:0] bits 7-0 of PWM2's cycle time	0x00
0x79f	PWM_TMAX2	R/W	[15:8] bits 15-8 of PWM2's cycle time	0x00
0x7a0	PWM_TCMP3	R/W	[7:0] bits 7-0 of PWM3's high time or low time(if pola[3]=1)	0x00
0x7a1	PWM_TCMP3	R/W	[15:8] bits 15-8 of PWM3's high time or low time	0x00
0x7a2	PWM TMAX3	R/W	[7:0] bits 7-0 of PWM3's cycle time	0x00
0x7a3	PWM_TMAX3 R/W [15:8] bits 15-8 of PWM3's cycle time		0x00	
0x7a4	PWM_TCMP4	R/W	[7:0] bits 7-0 of PWM4's high time or low time(if pola[4]=1)	0x00
0x7a5	PWM_TCMP4	R/W	[15:8] bits 15-8 of PWM4's high time or low time	0x00
0x7a6	PWM TMAX4	R/W	[7:0] bits 7-0 of PWM4's cycle time	0x00
0x7a7	PWM_TMAX4	R/W	[15:8] bits 15-8 of PWM4's cycle time	0x00
0x7a8	PWM_TCMP5	R/W	[7:0] bits 7-0 of PWM5's high time or low time(if pola[5]=1)	0x00
0x7a9	PWM_TCMP5	R/W	[15:8] bits 15-8 of PWM5's high time or low time	0x00
0x7aa	PWM_TMAX5	R/W	[7:0] bits 7-0 of PWM5's cycle time	0x00
0x7ab	PWM_TMAX5	R/W	[15:8] bits 15-8 of PWM5's cycle time	0x00
0x7ac	PWM_PNUM0	R/W	[7:0] bits 7-0 of PWM0 Pulse number in count mode and IR mode	0x00
0x7ad	PWM_PNUM0	R/W	[13:8] bits 13-8 of PWM0 Pulse number in count mode and IR mode	0x00
0x7ae~ 0x7af	reserved			
0x7b0	PWM_MASKO	R/W	INT mask [0] PWM0 Pnum int 0: disable 1: Enable [1] PWM0 ir dma fifo mode int	0x00

Address	Mnemonic	Туре	Description	Reset Value	
			0: disable 1: Enable		
			[2] PWM0 frame int		
			0: disable 1: Enable		
			[3] PWM1 frame int		
			0: disable 1: Enable		
			[4] PWM2 frame int		
			0: disable 1: Enable		
			[5] PWM3 frame int		
			0: disable 1: Enable		
			[6] PWM4 frame int		
			0: disable 1: Enable		
			[7] PWM5 frame int		
			0: disable 1: Enable		
			INT status, write 1 to clear		
			[0]: PWM0 pnum int (have sent		
			PNUM pulses,		
			PWM NCNT==PWM PNUM)		
			[1]:PWM0 ir dma fifo mode		
			int(pnum int &fifo empty in ir dma		
			fifo mode)		
			[2]: PWM0 cycle done int		
			(PWM_CNT==PWM_TMAX)		
0x7b1	PWM INTO	R/W	[3]: PWM1 cycle done int	0x00	
07/01		1,7 00	(PWM CNT==PWM TMAX)	0,00	
			[4]: PWM2 cycle done int		
			(PWM_CNT==PWM_TMAX)		
			[5]: PWM3 cycle done int		
			(PWM_CNT==PWM_TMAX)		
			[6]: PWM4 cycle done int		
			(PWM_CNT==PWM_TMAX)		
			[7]: PWM5 cycle done int		
			(PWM_CNT==PWM_TMAX)		
			[0]: PWM0 fifo mode fifo cnt int		
0x7b2	PWM MASK1	R/W	mask	0x00	
02702	P VVIVI_IVIASKI	ny vv	0: disable, 1: Enable	0,00	
			INT status, write 1 to clear		
			[0]: fifo mode cnt int, when		
0x7b3	PWM_INT1	R/W	FIFO_NUM (0x7cd[3:0]) is less than	0x00	
			FIFO_NUM_LVL (0x7cc[3:0])		
0v7h4		D		0,00	
0x7b4	PWM_CNT0	R	[7:0]PWM0 cnt value	0x00	
0x7b5	PWM_CNT0		[15:8]PWM0 cnt value	0x00	
0x7b6	PWM_CNT1	R	[7:0]PWM1 cnt value	0x00	
0x7b7	PWM_CNT1	-	[15:8]PWM1 cnt value	0x00	
0x7b8	PWM_CNT2	R	[7:0]PWM2 cnt value	0x00	
0x7b9	PWM_CNT2		[15:8]PWM2 cnt value	0x00	
0x7ba	PWM_CNT3	R	[7:0]PWM3 cnt value	0x00	

Ox7bc PWM_CNT4 R [7:0]PWM4 cnt value Ox00 0x7bd PWM_CNT4 [15:8]PWM4 cnt value 0x00 0x7be PWM_CNT5 R [7:0]PWM5 cnt value 0x00 0x7bf PWM_CNT5 R [7:0]PWM5 cnt value 0x00 0x7c0 PWM_NCNT0 R [7:0]PWM0 pluse_cnt value 0x00 0x7c1 PWM_NCNT0 R [7:0]PWM0 pluse_cnt value 0x00 0x7c2 reserved [7:0] bits 7-0 of PWM0's high time or low time(if pola[0]=1), if shadow bit(fifo data[14]) is 1'b1 in ir fifo mode 0x55 0x7c4 PWM_TCMP0_SHADOW R/W [15:8] bits 15-8 of PWM0's high time or low time, if shadow bit(fifo data[14]) is 1'b1 in ir fifo mode or dma fifo mode 0x55 0x7c6 PWM_TCMP0_SHADOW R/W [15:8] bits 15-8 of PWM0's cycle time, if shadow bit(fifo data[14]) is 1'b1 in ir fifo mode or dma fifo mode 0x55 0x7c6 PWM_TMAX0_SHADOW R/W [15:8] bits 15-8 of PWM0's cycle time, if shadow bit(fifo data[14]) is 1'b1 in ir fifo mode 0x00 0x7c7 PWM_TMAX0_SHADOW R/W Use in ir fifo mode or dma fifo mode 0x00 0x7c7	Address	Mnemonic	Туре	Description	Reset Value
Ox7bd PWM_CNT4 [15:8]PWM4 cnt value Ox00 0x7be PWM_CNT5 R [7:0]PWM5 cnt value 0x00 0x7c0 PWM_NCNT0 R [7:0]PWM0 pluse_cnt value 0x00 0x7c1 PWM_NCNT0 R [7:0]PWM0 pluse_cnt value 0x00 0x7c2 ~ reserved [15:8]PWM0 pluse_cnt value 0x00 0x7c3 reserved [7:0] bits 7-0 of PWM0's high time or low time(if pola[0]=1),if shadow bit(fif data[14]) is 1'b1 in ir fifo mode or dma fifo mode 0x55 0x7c4 PWM_TCMP0_SHADOW R/W [15:8] bits 15-8 of PWM0's high time or low time, if shadow bit(fifo data[14]) is 1'b1 in ir fifo mode or dma fifo mode 0x55 0x7c6 PWM_TMAX0_SHADOW R/W [7:0] bits 7-0 of PWM0's cycle time, if shadow bit(fifo data[14]) is 1'b1 0x00 0x7c7 PWM_TMAX0_SHADOW R/W [15:8] bits 15-8 of PWM0's cycle time, if shadow bit(fifo frame[14]) 0x00 0x7c7 PWM_TMAX0_SHADOW R/W Use in ir fifo mode 0x00 0x7c7 PWM_TMAX0_SHADOW R/W Use in ir fifo mode 0x00 0x7c6 FIFO_DAT1_ENTRY R/W Use in ir	0x7bb	PWM_CNT3		[15:8]PWM3 cnt value	0x00
Ox7be PWM_CNT5 R [7:0]PWMS cnt value Ox00 0x7bf PWM_CNT5 [15:8]PWM5 cnt value 0x00 0x7c0 PWM_NCNT0 R [7:0]PWM0 pluse_cnt value 0x00 0x7c1 PWM_NCNT0 R [7:0]PWM0 pluse_cnt value 0x00 0x7c2 ~ reserved [15:8]PWM0 pluse_cnt value 0x00 0x7c3 reserved [7:0] bits 7-0 of PWM0's high time or low time(if pola[0]=1), if shadow bit(fifo data[14]) is 1'b1 in ir fifo mode or dma fifo mode 0x55 0x7c5 PWM_TCMP0_SHADOW R/W [15:8] bits 15-8 of PWM0's high time or low time, if shadow bit(fifo data[14]) is 1'b1 in ir fifo mode or dma fifo mode 0x55 0x7c6 PWM_TMAX0_SHADOW R/W [15:8] bits 15-8 of PWM0's cycle time, in fifo mode or dma fifo mode 0x00 0x7c7 PWM_TMAX0_SHADOW R/W [15:8] bits 15-8 of PWM0's cycle time, in fifo mode or dma fifo mode 0x00 0x7c7 PWM_TMAX0_SHADOW R/W [15:8] bits 15-8 of PWM0's cycle time, in fifo mode or dma fifo mode 0x00 0x7c7 PWM_TMAX0_SHADOW R/W [15:8] bits 15-8 of PWM0's cycle time, in fifo mode or dma fifo 0x00 <	0x7bc	PWM_CNT4	R	[7:0]PWM4 cnt value	0x00
0x7bf PWM_CNT5 [15:8]PWM5 cnt value 0x00 0x7c0 PWM_NCNT0 R [7:0]PWM0 pluse_cnt value 0x00 0x7c1 PWM_NCNT0 [15:8]PWM0 pluse_cnt value 0x00 0x7c2 ~ 0x7c3 reserved [15:8]PWM0 pluse_cnt value 0x00 0x7c4 PWM_TCMP0_SHADOW R/W [7:0] bits 7-0 of PWM0's high time or low time(if pola[0]=1),if shadow bit(fifo data[14]) is 1'b1 in ir fifo mode or dma fifo mode 0x55 0x7c5 PWM_TCMP0_SHADOW R/W [15:8] bits 15-8 of PWM0's high time or low time, if shadow bit(fifo data[14]) is 1'b1 in ir fifo mode or dma fifo mode 0x55 0x7c6 PWM_TMAX0_SHADOW R/W [15:8] bits 15-8 of PWM0's cycle time, in ir fifo mode or dma fifo mode 0x00 0x7c7 PWM_TMAX0_SHADOW R/W If shadow bit(fifo data[14]) is 1'b1 0x00 0x7c7 PWM_TMAX0_SHADOW R/W If shadow bit(fifo frame[14]) is 1'b1 in ir fifo mode or dma fifo mode 0x00 0x7c7 PWM_TMAX0_SHADOW R/W Use in ir fifo mode 0x00 0x7c8 FIFO_DAT1_ENTRY R/W Use in ir fifo mode 0x00 0x7c4 FIFO_DAT3_ENTRY	0x7bd	PWM_CNT4		[15:8]PWM4 cnt value	0x00
0x7c0PWM_NCNT0R[7:0]PWM0 pluse_cnt value0x000x7c1PWM_NCNT0[15:8]PWM0 pluse_cnt value0x000x7c2 ~ 0x7c3reserved[15:8]PWM0 pluse_cnt value0x000x7c4PWM_TCMP0_SHADOWR/W[7:0] bits 7-0 of PWM0's high time or low time(if pola[0]=1),if shadow bit(fifo data[14]) is 1'b1 in ir fifo mode or dma fifo mode0x550x7c5PWM_TCMP0_SHADOWR/W[15:8] bits 15-8 of PWM0's high time or low time, if shadow bit(fifo data[14]) is 1'b1 in ir fifo mode or dma fifo mode0x550x7c6PWM_TMAX0_SHADOWR/W[7:0] bits 7-0 of PWM0's cycle time, if shadow bit(fifo data[14]) is 1'b10x00 in ir fifo mode or dma fifo mode0x7c6PWM_TMAX0_SHADOWR/W[15:8] bits 15-8 of PWM0's cycle time, if shadow bit(fifo frame[14]) is 1'b1 in ir fifo mode or dma fifo mode0x000x7c7PWM_TMAX0_SHADOWR/W[15:8] bits 15-8 of PWM0's cycle time, if shadow bit(fifo frame[14]) is 1'b1 in ir fifo mode or dma fifo mode0x000x7c8FIFO_DAT0_ENTRYR/WUse in ir fifo mode0x000x7caFIFO_DAT1_ENTRYR/WUse in ir fifo mode0x000x7cbFIFO_DAT3_ENTRYR/WUse in ir fifo mode0x000x7ccFIFO_NUM_LVLR/WFIFO num int trigger level0x000x7c4FIFO_SRR[3:0]:FIFO DATA NUM(byte) [5]:FIFO FULL0x10	0x7be	PWM_CNT5	R	[7:0]PWM5 cnt value	0x00
0x7c1 PWM_NCNT0 [15:8]PWM0 pluse_cnt value 0x00 0x7c2 ~ reserved [7:0] bits 7-0 of PWM0's high time 0x7c3 0x7c4 PWM_TCMP0_SHADOW R/W [7:0] bits 7-0 of PWM0's high time 0x55 0x7c5 PWM_TCMP0_SHADOW R/W [7:0] bits 7-0 of PWM0's high time 0x55 0x7c5 PWM_TCMP0_SHADOW R/W [15:8] bits 15-8 of PWM0's high time or low time, if shadow bit(fifo data[14]) is 1'b1 in ir fifo mode or dma fifo mode 0x55 0x7c6 PWM_TMAX0_SHADOW R/W [7:0] bits 7-0 of PWM0's cycle time, if shadow bit(fifo data[14]) is 1'b1 in ir fifo mode or dma fifo mode 0x00 0x7c6 PWM_TMAX0_SHADOW R/W if shadow bit(fifo frame[14]) is 1'b1 0x00 0x7c7 PWM_TMAX0_SHADOW R/W If shadow bit(fifo frame[14]) is 1'b1 0x00 0x7c8 FIFO_DAT0_ENTRY R/W Use in ir fifo mode 0x00 0x7ca FIFO_DAT1_ENTRY R/W Use in ir fifo mode 0x00 0x7ca FIFO_DAT3_ENTRY R/W Use in ir fifo mode 0x00 0x7ca FIFO_SR R [3:0]:FIFO DATA NUM(byte) 0x00 0x7cd FIFO_SR R<	0x7bf	PWM_CNT5		[15:8]PWM5 cnt value	0x00
0x7c2 ~ 0x7c3 reserved [7:0] bits 7-0 of PWM0's high time or low time(if pola[0]=1),if shadow bit(fif odata[14]) is 1'b1 in ir fifo mode or dma fifo mode 0x55 0x7c4 PWM_TCMP0_SHADOW R/W [7:0] bits 7-0 of PWM0's high time or low time(if pola[0]=1),if shadow bit(fif odata[14]) is 1'b1 in ir fifo mode or dma fifo mode 0x55 0x7c5 PWM_TCMP0_SHADOW R/W [15:8] bits 15-8 of PWM0's high time or low time, if shadow bit(fifo data[14]) is 1'b1 in ir fifo mode or dma fifo mode 0x55 0x7c6 PWM_TMAX0_SHADOW R/W If shadow bit(fifo data[14]) is 1'b1 0x00 0x7c7 PWM_TMAX0_SHADOW R/W If shadow bit(fifo data[14]) is 1'b1 0x00 0x7c7 PWM_TMAX0_SHADOW R/W If shadow bit(fifo frame[14]) is 1'b1 in ir fifo mode or dma fifo mode 0x00 0x7c7 PWM_TMAX0_SHADOW R/W If shadow bit(fifo frame[14]) is 1'b1 in ir fifo mode or dma fifo mode 0x00 0x7c8 FIFO_DAT1_ENTRY R/W Use in ir fifo mode 0x00 0x7c4 FIFO_DAT3_ENTRY R/W Use in ir fifo mode 0x00 0x7cc FIFO_NUM_LVL R/W ISE in ir fifo mode 0x00 0x7cc FIFO_NUM_LVL R/W Use in ir fifo mode 0x00	0x7c0	PWM_NCNT0	R	[7:0]PWM0 pluse_cnt value	0x00
0x7c3reserved	0x7c1	PWM_NCNT0		[15:8]PWM0 pluse_cnt value	0x00
0x7c4PWM_TCMP0_SHADOWR/Wor low time(if pola[0]=1),if shadow bit(fifo data[14]) is 1'b1 in ir fifo mode or dma fifo mode0x550x7c5PWM_TCMP0_SHADOWR/W[15:8] bits 15-8 of PWM0's high time or low time, if shadow bit(fifo data[14]) is 1'b1 in ir fifo mode or dma fifo mode0x550x7c6PWM_TMAX0_SHADOWR/W[7:0] bits 7-0 of PWM0's cycle time, if shadow bit(fifo data[14]) is 1'b10x00 in ir fifo mode or dma fifo mode0x7c6PWM_TMAX0_SHADOWR/W[15:8] bits 15-8 of PWM0's cycle time, if shadow bit(fifo fata[14]) is 1'b10x00 in ir fifo mode or dma fifo mode0x7c7PWM_TMAX0_SHADOWR/W[15:8] bits 15-8 of PWM0's cycle time, if shadow bit(fifo frame[14]) is 1'b1 in ir fifo mode or dma fifo mode0x000x7c7PWM_TMAX0_SHADOWR/WUse in ir fifo mode or dma fifo mode0x000x7c7FIFO_DAT0_ENTRYR/WUse in ir fifo mode0x000x7c8FIFO_DAT1_ENTRYR/WUse in ir fifo mode0x000x7c4FIFO_DAT3_ENTRYR/WUse in ir fifo mode0x000x7ccFIFO_NUM_LVLR/WFIFO num int trigger level0x000x7cdFIFO_SRR[3:0]:FIFO AND NUM(byte) [3:FIFO FULL0x10		reserved			
0x7c5PWM_TCMP0_SHADOWR/Wtime or low time, if shadow bit(fifo data[14]) is 1'b1 in ir fifo mode or dma fifo mode0x550x7c6PWM_TMAX0_SHADOWR/W[7:0] bits 7-0 of PWM0's cycle time, in ir fifo mode or dma fifo mode0x000x7c7PWM_TMAX0_SHADOWR/W[15:8] bits 15-8 of PWM0's cycle time, if shadow bit(fifo frame[14]) is 1'b1 in ir fifo mode or dma fifo mode0x000x7c7PWM_TMAX0_SHADOWR/W[15:8] bits 15-8 of PWM0's cycle time, if shadow bit(fifo frame[14]) is 1'b1 in ir fifo mode or dma fifo mode0x000x7c8FIFO_DAT0_ENTRYR/WUse in ir fifo mode0x000x7c8FIFO_DAT1_ENTRYR/WUse in ir fifo mode0x000x7c4FIFO_DAT3_ENTRYR/WUse in ir fifo mode0x000x7ccFIFO_NUM_LVLR/WUse in ir fifo mode0x000x7c4FIFO_SRR[3:0]:FIFO DATA NUM(byte) [5]:FIFO FULL0x10	0x7c4	PWM_TCMP0_SHADOW	R/W	or low time(if pola[0]=1),if shadow bit(fifo data[14]) is 1'b1 in ir fifo	0x55
0x7c6PWM_TMAX0_SHADOWR/Wif shadow bit(fifo data[14]) is 1'b1 in ir fifo mode or dma fifo mode0x00 in ir fifo mode or dma fifo mode0x7c7PWM_TMAX0_SHADOWR/W[15:8] bits 15-8 of PWM0's cycle time, if shadow bit(fifo frame[14]) is 1'b1 in ir fifo mode or dma fifo mode0x000x7c8FIFO_DAT0_ENTRYR/WUse in ir fifo mode0x000x7c9FIFO_DAT1_ENTRYR/WUse in ir fifo mode0x000x7caFIFO_DAT2_ENTRYR/WUse in ir fifo mode0x000x7cbFIFO_DAT3_ENTRYR/WUse in ir fifo mode0x000x7ccFIFO_NUM_LVLR/WFIFO num int trigger level0x000x7cdFIFO_SRR[3:0]:FIFO DATA NUM(byte) [5]:FIFO FULL0x10	0x7c5	PWM_TCMP0_SHADOW	R/W	time or low time ,if shadow bit(fifo data[14]) is 1'b1 in ir fifo mode or	0x55
0x7c7PWM_TMAX0_SHADOWR/Wtime, if shadow bit(fifo frame[14]) is 1'b1 in ir fifo mode or dma fifo mode0x000x7c8FIFO_DAT0_ENTRYR/WUse in ir fifo mode0x000x7c9FIFO_DAT1_ENTRYR/WUse in ir fifo mode0x000x7caFIFO_DAT2_ENTRYR/WUse in ir fifo mode0x000x7cbFIFO_DAT3_ENTRYR/WUse in ir fifo mode0x000x7ccFIFO_NUM_LVLR/WUse in ir fifo mode0x000x7ccFIFO_NUM_LVLR/WISE in ir fifo mode0x000x7cdFIFO_SRR[3:0]:FIFO DATA NUM(byte)0x100x7cdFIFO_SRR[4]:FIFO FULL0x10	0x7c6	PWM_TMAX0_SHADOW	R/W	if shadow bit(fifo data[14]) is 1'b1	0x00
0x7c9FIFO_DAT1_ENTRYR/WUse in ir fifo mode0x000x7caFIFO_DAT2_ENTRYR/WUse in ir fifo mode0x000x7cbFIFO_DAT3_ENTRYR/WUse in ir fifo mode0x000x7ccFIFO_NUM_LVLR/WFIFO num int trigger level0x000x7cdFIFO_SRR[3:0]:FIFO DATA NUM(byte)0x100x7cdFIFO_SRR[4]:FIFO FULL0x10	0x7c7	PWM_TMAX0_SHADOW	R/W	time, if shadow bit(fifo frame[14]) is 1'b1 in ir fifo mode or dma fifo	0x00
Ox7ca FIFO_DAT2_ENTRY R/W Use in ir fifo mode 0x00 0x7cb FIFO_DAT3_ENTRY R/W Use in ir fifo mode 0x00 0x7cc FIFO_NUM_LVL R/W FIFO num int trigger level 0x00 0x7cd FIFO_SR R [3:0]:FIFO DATA NUM(byte) 0x10 [5]:FIFO FULL [5]:FIFO FULL 0x10	0x7c8	FIFO_DAT0_ENTRY	R/W	Use in ir fifo mode	0x00
Ox7cb FIFO_DAT3_ENTRY R/W Use in ir fifo mode 0x00 0x7cc FIFO_NUM_LVL R/W FIFO num int trigger level 0x00 0x7cd FIFO_SR R [3:0]:FIFO DATA NUM(byte) 0x10 [5]:FIFO FULL Image: Constraint of the second se	0x7c9	FIFO_DAT1_ENTRY	R/W	Use in ir fifo mode	0x00
Ox7cc FIFO_NUM_LVL R/W FIFO num int trigger level Ox00 0x7cd FIFO_SR R [3:0]:FIFO DATA NUM(byte) [3:0]:FIFO EMPTY 0x10 [5]:FIFO FULL [5]:FIFO FULL [5]:FIFO FULL [5]:FIFO FULL [5]:FIFO FULL	0x7ca	FIFO_DAT2_ENTRY	R/W	Use in ir fifo mode	0x00
0x7cd FIFO_SR R [3:0]:FIFO DATA NUM(byte) [5]:FIFO FULL	0x7cb	FIFO_DAT3_ENTRY	R/W	Use in ir fifo mode	0x00
0x7cd FIFO_SR R [4]:FIFO EMPTY 0x10 [5]:FIFO FULL	0x7cc	FIFO_NUM_LVL	R/W	FIFO num int trigger level	0x00
0x7ce FIFO_CLR W1 [0]: write 1 to clear data in FIFO 0x00	0x7cd	FIFO_SR	R	[4]:FIFO EMPTY	0x10
	0x7ce	FIFO_CLR	W1	[0]: write 1 to clear data in FIFO	0x00

8.2 Enable PWM

Register PWM_EN (address 0x780)[5:1] and PWM_ENO (address 0x781)[0] serves to enable PWM5~PWM0 respectively via writing "1" for the corresponding bits.

8.3 Set PWM clock

PWM clock derives from system clock. Register PWM_CLKDIV (address 0x782) serves to set the frequency dividing factor for PWM clock. Formula below applies:

8.4 PWM waveform, polarity and output inversion

Each PWM channel has independent counter and 2 status including "Count" and "Remaining". Count and Remaining status form a signal frame.

8.4.1 Waveform of signal frame

When PWM#n is enabled, first PWM#n enters Count status and outputs High level signal by default. When PWM#n counter reaches cycles set in register PWM_TCMP#n (address 0x794~0x795, 0x798~0x799, 0x79c~0x79d, 0x7a0~0x7a1, 0x7a4~0x7a5, 0x7a8~0x7a9) / PWM_TCMP0_SHADOW (0x7c4~0x7c5), PWM#n enters Remaining status and outputs Low level till PWM#n cycle time configured in register PWM_TMAX#n (address 0x796~0x797, 0x79a~0x79b, 0x79e~0x79f, 0x7a2~0x7a3, 0x7a6~0x7a7, 0x7aa~0x7ab) / PWM_TMAX0_SHADOW (0x7c6~0x7c7) expires.

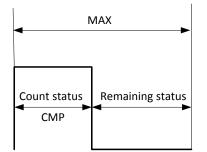


Figure 8-1 A signal frame

An interruption will be generated at the end of each signal frame if enabled via register PWM_MASK (address 0x7b0[2:7]).

8.4.2 Invert PWM output

PWM#n and PWM#n_N output could be inverted independently via register PWM_CC0 (address 0x784) and PWM_CC1 (address 0x785). When the inversion bit is enabled, waveform of the corresponding PWM channel will be inverted completely.

8.4.3 Polarity for signal frame

By default, PWM#n outputs High level at Count status and Low level at Remaining status. When the corresponding polarity bit is enabled via register PWM_CC2 (address 0x786[5:0]), PWM#n will output Low level at Count status and High level at Remaining status.

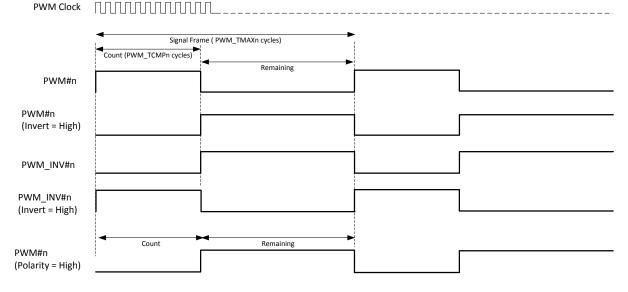


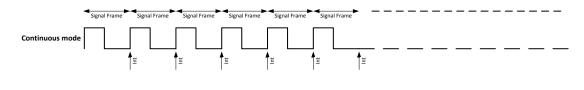
Figure 8-2 PWM output waveform chart

8.5 PWM mode

8.5.1 Select PWM mode

PWM0 supports five modes, including Continuous mode (normal mode, default), Counting mode, IR mode, IR FIFO mode, IR DMA FIFO mode.

PWM1~PWM5 only support Continuous mode.


Register PWM_MODE (address 0x783) serves to select PWM0 mode.

8.5.2 Continuous mode

PWM0~PWM5 all support Continuous mode. In this mode, PWM#n continuously sends out signal frames. PWM#n should be disabled via address 0x780/0x781 to stop it; when stopped, the PWM output will turn low immediately.

During Continuous mode, waveform could be changed freely via PWM_TCMP#n and PWM_TMAX#n. New configuration for PWM_TCMP#n and PWM_TMAX#n will take effect in the next signal frame.

After each signal frame is finished, corresponding PWM cycle done interrupt flag bit (0x7b1[2:7]) will be automatically set to 1b'1. If the interrupt is enabled by setting PWM_MASKO (address 0x7b0[2:7]) as 1b'1, a frame interruption will be generated. User needs to write 1b'1 to the flag bit to manually clear it.

8.5.3 Counting mode

Only PWM0 supports Counting mode. Address 0x783[3:0] should be set as 4b'0001 to select PWM0 counting mode.

In this mode, PWM0 sends out specified number of signal frames which is defined as a pulse group. The number is configured via register PWM_PNUM0 (address 0x7ac~0x7ad).

After each signal frame is finished, PWMO cycle done interrupt flag bit (0x7b1[2]) will be automatically set to 1b'1. If the interrupt is enabled by setting PWM_MASKO (address 0x7b0[2]) as 1b'1, a frame interruption will be generated. User needs to write 1b'1 to the flag bit to manually clear it.

After a pulse group is finished, PWM0 will be disabled automatically, and PWM0 pnum interrupt flag bit (0x7b1[0]) will be automatically set to 1b'1. If the interrupt is enabled by setting PWM_MASKO (address 0x7b0[0]) as 1b'1, a Pnum interruption will be generated. User needs to write 1b'1 to the flag bit to manually clear it.

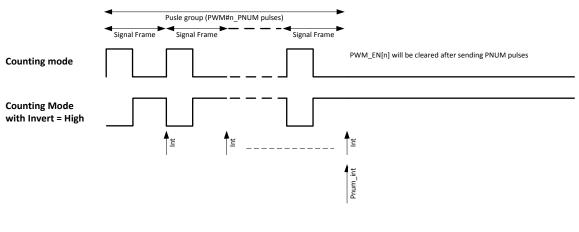


Figure 8-4 Counting mode (n=0)

Counting mode also serves to stop IR mode gracefully. Refer to section 8.5.4 for details.

8.5.4 IR mode

Only PWM0 supports IR mode. Address 0x783[3:0] should be set as 4b'0011 to select PWM0 IR mode.

In this mode, specified number of frames is defined as one pulse group. In contrast to Counting mode where PWMO stops after first pulse group is finished, PWMO will constantly send pulse groups in IR mode.

During IR mode, PWM0 output waveform could also be changed freely via WM_TCMP0, PWM_TMAX0 and PWM_PNUM0. New configuration for PWM_TCMP0, PWM_TMAX0 and PWM_PNUM0 will take effect in the next pulse group.

To stop IR mode and complete current pulse group, user can switch PWM0 from IR mode to Counting mode so that PWM0 will stop after current pulse group is finished. If PWM0 is disabled

```
DS-TLSR8359-E5
```


directly via PWM_EN0 (0x781[0]), PWM0 output will turn Low immediately despite of current pulse group.

After each signal frame/pulse group is finished, PWM0 cycle done interrupt flag bit (0x7b1[2])/PWM0 pnum interrupt flag bit (0x7b1[0]) will be automatically set to 1b'1. A frame interruption/Pnum interruption will be generated (if enabled by setting address 0x7b0[2]/0x7b0[0] as 1b'1).

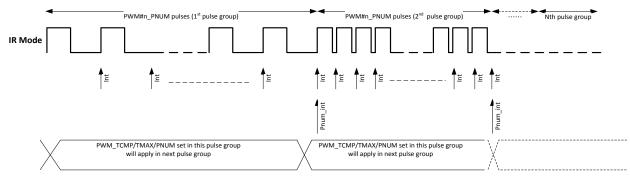


Figure 8-5 IR mode (n=0)

8.5.5 IR FIFO mode

IR FIFO mode is designed to allow IR transmission of long code patterns without the continued intervention of MCU, and it is designed as a selectable working mode on PWM0. The IR carrier frequency is divided down from the system clock and can be configured as any normal IR frequencies, e.g. 36kHz, 38kHz, 40kHz, or 56kHz.

Only PWM0 supports IR FIFO mode. Address 0x783[3:0] should be set as 4b'0111 to select PWM0 IR FIFO mode.

An element ("FIFO CFG Data") is defined as basic unit of IR waveform, and written into FIFO. This element consists of 16 bits, including:

- ♦ bit[13:0] defines PWM pulse number of current group.
- ♦ bit[14] determines duty cycle and period for current PWM pulse group.

0: use configuration of TCMP0 and TMAX0 in 0x794~0x797;

1: use configuration of TCMP0_SHADOW and TMAX0_SHADOW in 0x7c4~0x7c7.

bit[15] determines whether current PWM pulse group is used as carrier, i.e. whether
 PWM will output pulse (1) or low level (0).

User should use FIFO_DATA_ENTRY in 0x7c8~0x7cb to write the 16-bit "FIFO CFG Data" into FIFO by byte or half word or word.

- ♦ To write by byte, user should successively write 0x7c8, 0x7c9, 0x7ca and 0x7cb.
- \diamond To write by half word, user should successively write 0x7c8 and 0x7ca.
- \diamond To write by word, user should write 0x7c8.

FIFO depth is 8 bytes. User can read the register FIFO_SR in 0x7cd to view FIFO empty/full status and check FIFO data number.

```
DS-TLSR8359-E5
```

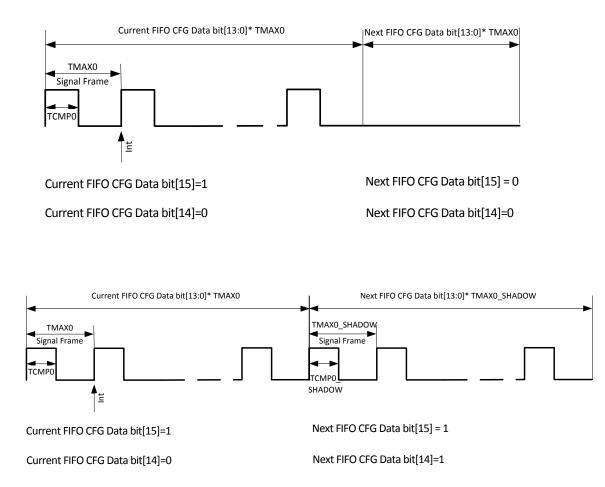



Figure 8-6 IR format examples

When "FIFO CFG Data" is configured in FIFO and PWM0 is enabled via PWM_EN0 (address 0x781[0]), the configured waveforms will be output from PWM0 in sequence. As long as FIFO doesn't overflow, user can continue to add waveforms during IR waveforms sending process, and long IR code that exceeds the FIFO depth can be implemented this way. After all waveforms are sent, FIFO becomes empty, PWM0 will be disabled automatically.

The FIFO_CLR register (address 0x7ce[0]) serves to clear data in FIFO. Writing 1b'1 to this register will clear all data in the FIFO. Note that the FIFO can only be cleared when not in active transmission.

8.5.6 IR DMA FIFO mode

IR DMA FIFO mode is designed to allow IR transmission of long code patterns without occupation of MCU, and it is designed as a selectable working mode on PWMO. The IR carrier frequency is divided down from the system clock and can be configured as any normal IR frequencies, e.g. 36kHz, 38kHz, 40kHz, or 56kHz.

Only PWM0 supports IR DMA FIFO mode. Address 0x783[3:0] should be set as 4b'1111 to select PWM0 IR DMA FIFO mode.

This mode is similar to IR FIFO mode, except that "FIFO CFG Data" is written into FIFO by DMA instead of MCU. User should write the configuration of "FIFO CFG Data" into RAM, and then enable DMA channel 5. DMA will automatically write the configuration into FIFO.

***Note:** In this mode, when DMA channel 5 is enabled, PWM will automatically output configured waveform, without the need to manually enable PWMO via 0x781[0] (i.e. 0x781[0] will be set as 1b'1 automatically).

Example 1:

Suppose Mark carrier (pulse) frequency1(F1) = 40kHz, duty cycle 1/3

Mark carrier (pulse) frequency2(F2) = 50kHz, duty cycle 1/2

Space carrier (low level) frequency(F3) = 40kHz

If user wants to make PWM send waveforms in following format (PWM CLK =24MHz):

Burst(20[F1]), i.e. 20 F1 pulses Burst(30[F2]), Burst(50[F1]), Burst(50[F2]), Burst(20[F1],10[F3]), Burst(30[F2],10[F3])

Step1: Set carrier F1 frequency as 40kHz, set duty cycle as 1/3.

Set **PWM_TMAX0** as 0x258 (i.e. 24MHz/40kHz=600=0x258). Since duty cycle is 1/3, set **PWM_TCMP0** as 0xc8 (i.e. 600/3=200=0xc8). Set carrier F2 frequency as 50kHz, set duty cycle as 1/2. Set **PWM_TMAX0_SHADOW** as 0x1e0 (i.e. 24MHz/50kHz=480=0x1e0). Since duty cycle is 1/2, set **PWM_TCMP0_SHADOW** as 0xf0 (i.e. 480/2=240=0xf0).

Step2: Generate "FIFO CFG Data" sequence.

Burst(20[F1]): {[15]: 1'b1, [14]: 1'b0, [13:0]: 'd20}=0x8014. Burst(30[F2]): {[15]: 1'b1, [14]: 1'b1, [13:0]: 'd30}=0xc01e. Burst(50[F1]) : {[15]: 1'b1, [14]: 1'b0, [13:0]: 'd50}=0x8032. Burst(50[F2]): {[15]: 1'b1, [14]: 1'b1, [13:0]: 'd50}=0xc032. Burst(20[F1],10[F3]): {[15]: 1'b1, [14]: 1'b0, [13:0]: 'd20}=0x8014, {[15]: 1'b0, [14]: 1'b0, [13:0]: 'd10}=0x000a.

Burst(30[F2],10[F3]): {[15]: 1'b1, [14]: 1'b1, [13:0]: 'd30}=0xc01e, {[15]:1'b0, [14]: 1'b0, [13:0]: 'd10}=0x000a.

Step3: Write "FIFO CFG Data" into SRAM in DMA format.

DMA SOURCE ADDRESS+0x00: 0x0000_0010 (dma transfer-length: 16byte) DMA SOURCE ADDRESS+0x04: 0xc01e_8014 (LITTLE ENDIAN) DMA SOURCE ADDRESS+0x08: 0xc032_8032 DMA SOURCE ADDRESS+0x0c: 0x000a_8014 DMA SOURCE ADDRESS+0x10: 0x000a_c01e

Step4: Enable DMA channel 5 to send PWM waveforms.

Write 1'b1 to address 0x524[5] to enable DMA channel 5.

After all waveforms are sent, FIFO becomes empty, PWM0 will be disabled automatically (address 0x781[0] is automatically cleared). The FIFO mode stop interrupt flag bit (address 0x7b3[0]) will be automatically set as 1b'1. If the interrupt is enabled by setting PWM_MASK1 (address 0x7b2[0]) as 1b'1, a FIFO mode stop interrupt will be generated. User needs to write 1b'1 to the flag bit to manually clear it.

Example 2:

Suppose carrier frequency is 38kHz, system clock frequency is 24MHz, duty cycle is 1/3, and the format of IR code to be sent is shown as below:

- 1) Preamble waveform: 9ms carrier + 4.5ms low level.
- 2) Data 1 waveform: 0.56ms carrier + 0.56ms low level.
- 3) Data 0 waveform: 0.56ms carrier + 1.69ms low level.
- 4) Repeat waveform: 9ms carrier + 2.25ms low level + 0.56ms carrier. Repeat waveform duration is 11.81ms, interval between two adjacent repeat waveforms is 108ms.
- 5) End waveform: 0.56ms carrier.

User can follow the steps below to configure related registers:

Step1: Set carrier frequency as 38kHz, set duty cycle as 1/3.

Set **PWM_TMAX0** as 0x277 (i.e. 24MHz/38kHz=631=0x277).

Since duty cycle is 1/3, set **PWM_TCMP0** as 0xd2 (i.e. 631/3=210=0xd2).

Step2: Generate "FIFO CFG Data" sequence.

Preamble waveform:

DS-TLSR8359-E5

9ms carrier: {[15]:1'b1, [14]:1'b0, [13:0]: 9*38='d 342=14'h 156}=0x8156 4.5ms low level: {[15]:1'b0, [14]:1'b0, [13:0]: 4.5*38='d 171=14'h ab}=0x00ab

Data 1 waveform:

0.56ms carrier: {[15]:1'b1, [14]:1'b0, [13:0]: 0.56*38='d 21=14'h 15}=0x8015

0.56ms low level: {[15]:1'b0, [14]:1'b0, [13:0]: 0.56*38='d 21=14'h 15}=0x0015

Data 0 waveform:

0.56ms carrier: {[15]:1'b1, [14]:1'b0, [13:0]: 0.56*38='d 21=14'h 15}=0x8015

1.69ms low level: {[15]:1'b0, [14]:1'b0, [13:0]: 1.69*38='d 64=14'h 40}=0x0040

Repeat waveform:

9ms carrier: {[15]:1'b1, [14]:1'b0, [13:0]: 9*38='d 342=14'h 156}=0x8156

2.25ms low level: {[15]:1'b0, [14]:1'b0, [13:0]: 2.25*38='d 86=14'h 56}=0x0056

0.56ms carrier: {[15]:1'b1, [14]:1'b0, [13:0]: 0.56*38='d 21=14'h 15}=0x8015

108ms -11.81ms =96.19ms low level:

{[15]:1'b0, [14]:1'b0, [13:0]: 96.19*38='d 3655=14'h e47}=0x0e47

End waveform:

0.56ms carrier: {[15]:1'b1, [14]:1'b0, [13:0]: 0.56*38='d 21=14'h 15}=0x8015

Step3: Write "IR CFG Data" into SRAM in DMA format.

If user want PWM0 to send IR waveform in following format:

Preamble+0x5a+Repeat+End

Preamble: 0x8156, 0x00ab

0x5a=8'b01011010

- Data 0: 0x8015, 0x0040
- Data 1: 0x8015, 0x0015
- Data 0: 0x8015, 0x0040
- Data 1: 0x8015, 0x0015
- Data 1: 0x8015, 0x0015
- Data 0: 0x8015, 0x0040
- Data 1: 0x8015, 0x0015
- Data 0: 0x8015, 0x0040

Repeat: 0x8156, 0x0056, 0x8015, 0x0e47

End: 0x8015.

User needs to write the configuration information above into source address of DMA channel 5, as shown below:

DMA SOURCE ADDRESS+0x00: 0x0000_002e (dma transfer-length: 46byte)

DS-TLSR8359-E5

DMA SOURCE ADDRESS+0x04: 0x00ab_8156 (Preamble) (LITTLE ENDIAN) DMA SOURCE ADDRESS+0x08: 0x0040_8015 (Data 0) DMA SOURCE ADDRESS+0x0c: 0x0015_8015 (Data 1) DMA SOURCE ADDRESS+0x10: 0x0040_8015 (Data 0) DMA SOURCE ADDRESS+0x14: 0x0015_8015 (Data 1) DMA SOURCE ADDRESS+0x18: 0x0015_8015 (Data 1) DMA SOURCE ADDRESS+0x1c: 0x0040_8015 (Data 0) DMA SOURCE ADDRESS+0x20: 0x0015_8015 (Data 1) DMA SOURCE ADDRESS+0x24: 0x0040_8015 (Data 1) DMA SOURCE ADDRESS+0x22: 0x0040_8015 (Data 1) DMA SOURCE ADDRESS+0x22: 0x0040_8015 (Data 1) DMA SOURCE ADDRESS+0x22: 0x0040_8015 (Data 0) DMA SOURCE ADDRESS+0x22: 0x0040_8015 (Data 0) DMA SOURCE ADDRESS+0x22: 0x0040_8015 (Repeat) DMA SOURCE ADDRESS+0x20: 0x0056_8156 (Repeat) DMA SOURCE ADDRESS+0x20: 0x8015 (End)

Step4: Enable DMA channel 5 to send PWM waveforms.

Write 1'b1 to address 0x524[5] to enable DMA channel 5.

After all waveforms are sent, FIFO becomes empty, PWM0 will be disabled automatically (address 0x781[0] is automatically cleared). The FIFO mode stop interrupt flag bit (address 0x7b3[0]) will be automatically set as 1b'1. If the interrupt is enabled by setting PWM_MASK1 (address 0x7b2[0]) as 1b'1, a FIFO mode stop interrupt will be generated. User needs to write 1b'1 to the flag bit to manually clear it.

8.6 PWM interrupt

There are 9 interrupt sources from PWM function.

After each signal frame, PWM#n (n=0 5) will generate a frame-done IRQ (Interrupt Request) signal.

In Counting mode and IR mode, PWMO will generate a Pnum IRQ signal after completing a pulse group.

In IR FIFO mode, PWMO will generate a FIFO mode count IRQ signal when the FIFO_NUM value is less than the FIFO_NUM_LVL, and will generate a FIFO mode stop IRQ signal after FIFO becomes empty.

In IR DMA FIFO mode, PWM0 will generate an IR waveform send done IRQ signal, after DMA has sent all configuration data, FIFO becomes empty and final waveform is sent.

To enable PWM interrupt, the total enabling bit "irq_pwm" (address 0x641[6], see **section 6 Interrupt**) should be set as 1b'1. To enable various PWM interrupt sources, PWM_MASK0 (address 0x7b0[7:0]) and PWM_MASK1 (address 0x7b2[0]) should be set as 1b'1 correspondingly.

Interrupt status can be cleared via register PWM_INT0 (address 0x7b1[7:0]) and PWM_INT1 (address 0x7b3[0]).

```
DS-TLSR8359-E5
```


9 Quadrature Decoder

The TLSR8359 embeds one quadrature decoder (QDEC) which is designed mainly for applications such as wheel. The QDEC implements debounce function to filter out jitter on the two phase inputs, and generates smooth square waves for the two phase.

9.1 Input pin selection

The QDEC supports two phase input; each input is selectable from the 5 pins of PortD, PortC, and PortB via setting address 0xd2[2:0] (for channel a)/0xd3[2:0] (for channel b).

Address 0xd2[2:0]/0xd3[2:0]	Pin
0	RSVD (PA<2>)
1	RSVD (PA<3>)
2	PB<6>
3	PB<7>
4	PC<2>
5	PC<3>
6	RSVD (PD<6>)
7	PD<7>

Table 9-	1 Input	: pin se	election

Note: To use corresponding IO as QDEC input pin, it's needed first to enable GPIO function, enable "IE" (1) and disable "OEN" (1) for this IO.

9.2 Common mode and double accuracy mode

The QDEC embeds an internal hardware counter, which is not connected with bus.

Address 0xd7[0] serves to select common mode or double accuracy mode.

For each wheel rolling step, two pulse edges (rising edge or falling edge) are generated.

If address 0xd7[0] is cleared to select common mode, the QDEC Counter value (real time counting value) is increased/decreased by 1 only when the same rising/falling edges are detected from the two phase signals.

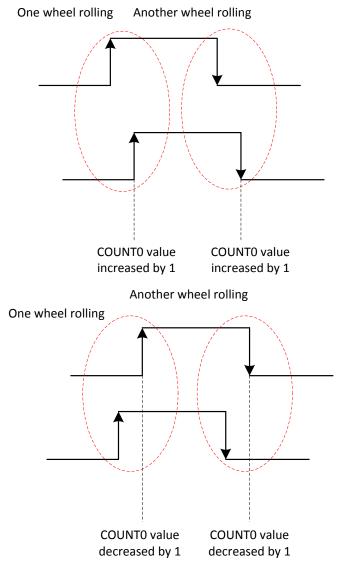


Figure 9-1 Common mode

If address 0xd7[0] is set to 1b'1 to select double accuracy mode, the QDEC Counter value (real time counting value) is increased/decreased by 1 on each rising/falling edge of the two phase signals; the COUNTO will be increased/decreased by 2 for one wheel rolling.

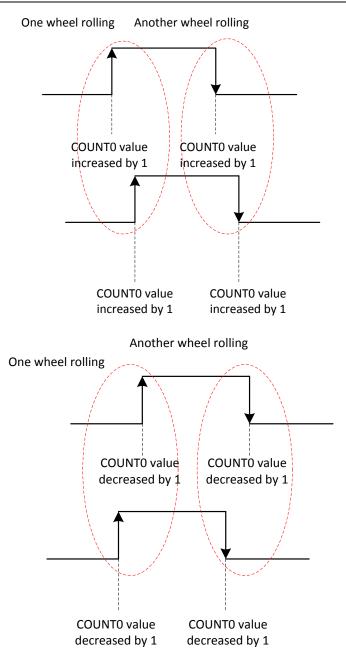


Figure 9-2 Double accuracy mode

9.3 Read real time counting value

Neither can Hardware Counter value be read directly via software, nor can the counting value in address 0xd0 be updated automatically.

To read real time counting value, first write address 0xd8[0] with 1b'1 to load Hardware Counter data into the QDEC_COUNT register, then read address 0xd0.

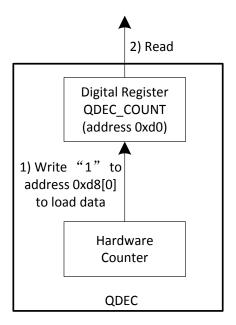


Figure 9-3 Read real time counting value

9.4 QDEC reset

Address 0x60[5] serves to reset the QDEC. The QDEC Counter value is cleared to zero.

9.5 Other configuration

The QDEC supports hardware debouncing. Address 0xd1[2:0] serves to set filtering window duration. All jitter with period less than the value will be filtered out and thus does not trigger count change.

Address 0xd1[4] serves to set input signal initial polarity.

Address 0xd1[5] serves to enable shuttle mode. Shuttle mode allows non-overlapping two phase signals as shown in the following figure.

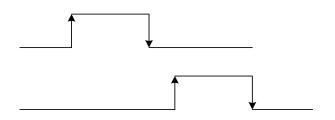


Figure 9-4 Shuttle mode

9.6 Timing sequence

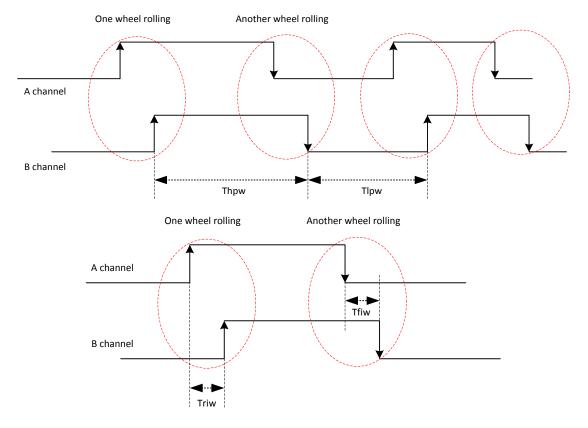


Figure 9-5 Timing sequence chart

Table 9-2 Timing

Time interval	Min Value
Thpw (High-level pulse width)	2^(n+1) *clk_32kHz *3 (n=0xd1[2:0])
Tlpw (Low-level pulse width)	2^(n+1) *clk_32kHz *3 (n=0xd1[2:0])
Triw (Interval width between two rising edges)	2^(n+1) *clk_32kHz (n=0xd1[2:0])
Tfiw (Interval width between two falling edges)	2^(n+1) *clk_32kHz (n=0xd1[2:0])

QDEC module works based on 32kHz clock to ensure it can work in suspend mode. QDEC module supports debouncing function, and any signal with width lower than the threshold (i.e. "2^(n+1) *clk_32kHz *3 (n=0xd1[2:0])) will be regarded as jitter. Therefore, effective signals input from Channel A and B should contain high/low level with width Thpw/Tlpw more than the threshold. The 2^n *clk_32kHz clock is used to synchronize input signal of QDEC module, so the interval between two adjacent rising/falling edges from Channel A and B, which are marked as Triw and Tfiw, should exceed "2^(n+1) *clk_32kHz".

Only when the timing requirements above are met, can QDEC module recognize wheel rolling times correctly.

DATA_LOAD

R/W

0xd8

9.7 Register table

Address	Mnemonic	Туре	Description	Reset value
0xd0	QDEC_COUNT	R	QDEC Counting value (read to clear): Pulse edge number	0x00
0xd1	QDEC_CC	R/W	 [2:0]: filter time (can filter 2^n *clk_32k*2 width deglitch) [4]: pola, input signal pola 0: no signal is low, 1: no signal is high [5]:shuttle mode 1 to enable shuttle mode 	0x00
0xd2	QDEC_CHNA	R/W	 [2:0] QDEC input pin select for channel a choose 1 of 5 pins for input channel a 7~0: {pd[7], rsvd (pd[6]), pc[3:2], pb[7:6], rsvd (pa[3:2])} 	0x00
0xd3	QDEC_CHNB	R/W	[2:0] QDEC input pin select for channel b choose 1 of 5 pins for input channel b7~0: {pd[7], rsvd (pd[6]), pc[3:2], pb[7:6], rsvd (pa[3:2])}	0x01
0xd6	QDEC_RST	R/W	[0]RSVD	0x00
0xd7	QDEC_DOUBLE	R/W	[0]Enable double accuracy mode	0x01

[0]write 1 to load data

when load completes it will be 0

Table 9- 3	Register table for QDEC
Table 9-5	Register table for QDEC

0x00

10 SAR ADC

The TLSR8359 integrates one SAR ADC module, which can be used to sample analog input signals such as battery voltage and temperature sensor.

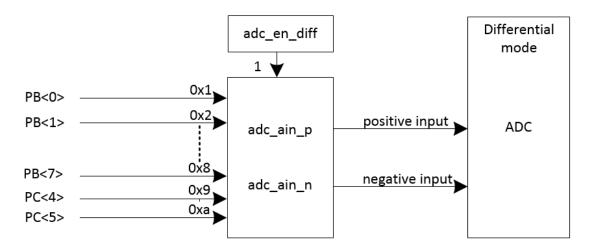


Figure 10-1 Block diagram of ADC

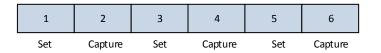
10.1 Power on/down

The SAR ADC is disabled by default. To power on the ADC, the analog register adc_pd (afe_0xfc<5>) should be set as 1b'0.

10.2 ADC clock

ADC clock is derived from external 24MHz crystal source, with frequency dividing factor configurable via the analog register adc_clk_div (afe_0xf4<2:0>).

ADC clock frequency (marked as F_{ADC_clk}) = 24MHz/(adc_clk_div+1)



10.3 ADC control in auto mode

10.3.1 Set max state and enable channel

The SAR ADC supports up to three channels including left channel, right channel and Misc channel. The left, right and Misc channels all consist of one "Set" state and one "Capture" state.

☆ The analog register r_max_scnt (afe_0xf2<6:4>) serves to set the max state index. As shown in the example below, the r_max_scnt should be set as 0x06.

- The left/Misc channel can be enabled independently via r_en_left (afe_0xf2<0>), r_en_misc (afe_0xf2<2>).
- Only when the left channel is enabled, can the right channel be enabled via r_en_right (afe_0xf2<1>).

10.3.2 "Set" state

The length of "Set" state for left, right and Misc channel is configurable via the analog register r_max_s (afe_0xf1<3:0>).

"Set" state duration (marked as T_{sd}) = r_max_s / 24MHz.

Each "Set" state serves to set ADC control signals for current channel via corresponding analog registers, including:

- → adc_en_diff: afe_0xec<4> (left channel), afe_0xec<5> (right channel), afe_0xec<6> (Misc channel). MUST set as 1b'1 to select differential input mode.
- adc_ain_p: afe_0xe8<7:4> (Misc channel), afe_0xe9<7:4> (left channel), afe_0xea<7:4> (right channel). Select positive input in differential mode.
- → adc_ain_n: afe_0xe8<3:0> (Misc channel), afe_0xe9<3:0> (left channel), afe_0xea<3:0> (right channel). Select negative input in differential mode.
- ☆ adc_vref: afe_0xe7<1:0> (left channel), afe_0xe7<3:2> (right channel), afe_0xe7<5:4> (Misc channel). Set reference voltage V_{REF}. ADC maximum input range is determined by the ADC reference voltage.

☆ adc_sel_ai_scale: afe_0xfa<7:6>. Set scaling factor for ADC analog input as 1 (default), or 1/8.

By setting this scaling factor, ADC maximum input range can be extended based on the $V_{\text{REF}}.$

For example, suppose the V_{REF} is set as 1.2V:

Since the scaling factor is 1 by default, the ADC maximum input range should be $0^{-1.2V}$ (negative input is GND) / $-1.2V^{+1.2V}$ (negative input is ADC GPIO pin).

If the scaling factor is set as 1/8, in theory ADC maximum input range should change to $0^{9.6V}$ (negative input is GND) / $-9.6V^{+9.6V}$ (negative input is ADC GPIO pin). But limited by input voltage of the chip's PAD, the actual range is narrower.

→ adc_res: afe_0xeb<1:0> (left channel), afe_0xeb<5:4> (right channel), afe_0xec<1:0> (Misc channel). Set resolution as 8/10/12/14 bits.

ADC data is always 15-bit format no matter what the resolution is set. For example, 14 bits resolution indicates ADC data consists of 14-bit valid data and 1-bit sign extension bit.

adc_tsamp: afe_0xed<3:0> (left channel), afe_0xed<7:4> (right channel), afe_0xee<3:0> (Misc channel). Set sampling time which determines the speed to stabilize input signals.

Sampling time (marked as T_{samp}) = adc_tsamp / F_{ADC_clk} .

The lower sampling cycle, the shorter ADC convert time.

♦ pga_boost, pga_gain: Set PGA gain in Boost stage and Gain stage. See PGA section.

10.3.3 "Capture" state

For the left, right and Misc channels, at the beginning of each "Capture" state, run signal is issued automatically to start an ADC sampling and conversion process; at the end of each "Capture" state, ADC output data is captured.

The length of "Capture" state for Misc channel is configurable via the analog register r_max_mc[9:0] (afe_0xf1<7:6>, afe_0xef<7:0>).

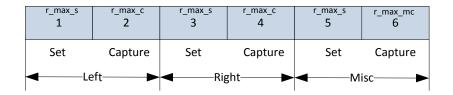
"Capture" state duration for Misc channel (marked as T_{cd}) = r_max_mc / 24MHz.

☆ The length of "Capture" state for left and right channel is configurable via the analog register r_max_c[9:0] (afe_0xf1<5:4>, afe_0xf0<7:0>).

"Capture" state duration for left & right channel (marked as T_{cd}) = r_max_c / 24MHz.

- ☆ The "VLD" bit (afe_0xf8<7>) will be set as 1b'1 at the end of "Capture" state to indicate the ADC data is valid, and this flag bit will be cleared automatically.
- The 15-bit ADC output data for Misc channel can be read from the analog register adc_dat[14:0] (afe_0xf8<6:0>, afe_0xf7<7:0>).

Note: The total duration " T_{td} ", which is the sum of the length of "Set" state and "Capture" state for all channels available, determines the sampling rate.


Sampling frequency (marked as F_s) = 1 / T_{td}

10.3.4 Usage cases

10.3.4.1 Case 1: 3-channel sampling for Left, Right and Misc

In this case, afe_0xf2<3:0> should be set as 0x7, so as to enable the left, right and Misc channels, the max state index should be set as "6" by setting afe_0xf2<6:4> as 0x6.

The total duration (marked as T_{td}) = (1*r_max_mc+3*r_max_s+2*r_max_c) / 24MHz.

10.3.4.2 Case 2: 2-channel sampling for Left and Misc

In this case, afe_0xf2<3:0> should be set as 0x5, so as to enable the left and Misc channels and disable the right channel, the max state index should be set as "4" by setting afe_0xf2<6:4> as 0x4.

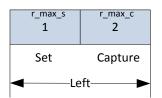
The total duration (marked as T_{td}) = (1*r_max_mc+2*r_max_s+1*r_max_c) / 24MHz.

r_max_s 1	x_s r_max_c r_max_s 2 3		r_max_mc 4
Set	Capture	Set	Capture
◄ —Le	eft	◄ M	isc 🛛 🕨

10.3.4.3 Case 3: 2-channel sampling for Left and Right

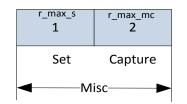
In this case, afe_0xf2<3:0> should be set as 0x3, so as to enable the left and right channels and disable the Misc channel, the max state index should be set as "4" by setting afe_0xf2<6:4> as 0x4.

The total duration (marked as T_{td}) = (2*r_max_s+2*r_max_c) / 24MHz.


r_max_s 1	r_max_c 2	r_max_s 3	r_max_c 4
Set	Capture	Set	Capture
⊣ Le	Left		ght — 🕨

10.3.4.4 Case 4: 1-channel sampling for Left

In this case, afe_0xf2<3:0> should be set as 0x1, so as to enable the left channel and disable the right and Misc channels, the max state index should be set as "2" by setting afe_0xf2<6:4> as 0x2.


The total duration (marked as T_{td}) = (1*r_max_s+1*r_max_c) / 24MHz.

10.3.4.5 Case 5: 1-channel sampling for Misc

In this case, afe_0xf2<3:0> should be set as 0x4, so as to enable the Misc channel and disable the left and right channels, the max state index should be set as "2" by setting afe_0xf2<6:4> as 0x2.

The total duration (marked as T_{td}) = (1*r_max_s+1*r_max_mc) / 24MHz.

10.3.4.6 Case 6 with detailed register setting

This case introduces the register setting details for 3-channel sampling of left, right and Misc channels.

r_max_s 1	r_max_c 2	r_max_s 3	r_max_c 4	r_max_s 5	r_max_mc 6
Set	Capture	Set	Capture	Set	Capture
Le	eft 🕒 🕨	≺ —Rig	ght — 🕨 🕨	◄ ───M	isc——

Table 10-1 Overall register setting

Function	Register setting
Power on the ADC	afe_0xfc<5> = 1b'0
	afe_0xf4<2:0> = 5
Set F _{ADC_clk} (ADC clock frequency) as 4MHz	F _{ADC_clk} = 24MHz/(5+1)=4MHz
Enable the left, right and Misc channels	afe_0xf2<3:0> = 0x7
Set the max state index as "6"	afe_0xf2<6:4> = 0x6

Table 10- 2Register setting for L/R/M channel

F		3			
Function	Left	Right	Misc		
Set T _{sd} ("Set" state duration)	afe_0xf1<3:0> = 10 $T_{sd} = r_max_s/24MHz = 10/24MHz = 0.417us$				
Set T _{cd} ("Capture" state duration) T _{td} (total	T _{cd} = r_max_c[9:0]/24N	afe_0xf0<7:0>=170 /Hz = 170/24MHz = 7.1us 	afe_0xf1<7:6>=0, afe_0xef<7:0>=130 T _{cd} = r_max_mc[9:0]/24MHz =130/24MHz = 5.4us 4MHz = 500/24MHz =20.83us		
duration) F _s (Sampling frequency)		T_{td} = (1*r_max_mc+3*r_max_s+2*r_max_c) / 24MHz = 500/24MHz =20.83us F_s = 1 / T_{td} = 24MHz/500 = 48kHz			
Select differential input	afe_0xec<4>=1 differential input	afe_0xec<5>=1 differential input	afe_0xec<6>=1 differential input		
Set input channel	afe_0xe9=0x12 Select B<0> and B<1> as positive input and negative input	afe_0xea=0x34 Select B<2> and B<3> as positive input and negative input	afe_0xe8=0xaf Select C<5> as positive input, select GND as negative input		
Set reference voltage V _{REF}	afe_0xe7<1:0>=0 V _{REF} = 0.6V	afe_0xe7<3:2>=1 V _{REF} = 0.9V	afe_0xe7<5:4>=2 V _{REF} =1.2V		
Set scaling factor for ADC analog input	ADC maximum input range: -0.6~+0.6V	afe_0xfa<7:6>=0 scaling factor: 1 ADC maximum input range: -0.9~+0.9V	ADC maximum input range: 0 ~ +1.2V		
Set resolution	afe_0xeb<1:0>=1 resolution: 10bits	afe_0xeb<5:4>=2 resolution: 12bits	afe_0xec<1:0>=3 resolution: 14bits		
Set T _{samp} (determines the speed to stabilize input before sampling)	afe_0xed<3:0>=1 T _{samp} = adc_tsamp / F _{ADC_clk} = 6/4MHz=1.5us	afe_0xed<7:4>=2 T _{samp} = adc_tsamp / F _{ADC_clk} = 9/4MHz=2.25us	afe_0xee<3:0>=3 T _{samp} = adc_tsamp / F _{ADC_clk} = 12/4MHz=3us		

10.4 Register table

Address	Mnemonic	Default value	Description
afe_0xe7<1:0>	adc_vrefl	00	Select V _{REF} for left channel 0x0: 0.6V 0x1: 0.9V 0x2: 1.2V
afe_0xe7<3:2>	adc_vrefr	00	Ox3: rsvdSelect VREF for right channelOx0: 0.6VOx1: 0.9VOx2: 1.2VOx3: rsvd
afe_0xe7<5:4>	adc_vrefm	00	Select V _{REF} for Misc channel 0x0: 0.6V 0x1: 0.9V 0x2: 1.2V 0x3: rsvd
afe_0xe7<7:6>	RSVD		
afe_0xe8<3:0>	adc_ain_m_n	0000	Select negative input for Misc channel: 0x0: No input 0x1: B<0> 0x2: B<1> 0x8: B<7> 0x9: C<4> 0x9: C<4> 0xa: C<5> 0xb: pga_n<0> (PGA left-channel negative output) 0xc: pga_n<1> (PGA right-channel negative output) 0xd: tempsensor_n (Temperature sensor negative output) 0xe: Ground 0xf: Ground
afe_0xe8<7:4>	adc_ain_m_p	0000	Select positive input for Misc channel: 0x0: No input 0x1: B<0> 0x2: B<1> 0x8: B<7> 0x9: C<4> 0xa: C<5> 0xb: pga_p<0> (PGA left-channel positive output) 0xc: pga_p<1> (PGA right-channel positive output) 0xd: tempsensor_p (Temperature sensor positive

Table 10-3 Register table related to SAR ADC

Address	Mnemonic	Default value	Description
			output) Oxe: rsvd Oxf: rsvd
afe_0xe9<3:0>	adc_ain_l_n	00	Select negative input for left channel 0x0: No input 0x1: B<0> 0x2: B<1> 0x8: B<7> 0x9: C<4> 0xa: C<5> 0xb: pga_n<0> (PGA left-channel negative output) 0xc: pga_n<1> (PGA right-channel negative output) 0xd: tempsensor_n (Temperature sensor negative output) 0xe: Ground 0xf: Ground
afe_0xe9<7:4>	adc_ain_l_p	00	Select positive input for left channel: 0x0: No input 0x1: B<0> 0x2: B<1> 0x8: B<7> 0x9: C<4> 0x9: C<4> 0xa: C<5> 0xb: pga_p<0> (PGA left-channel positive output) 0xc: pga_p<1> (PGA right-channel positive output) 0xd: tempsensor_p (Temperature sensor positive output) 0xe: rsvd 0xf: rsvd
afe_0xea<3:0>	adc_ain_r_n	00	Select negative input for right channel: 0x0: No input 0x1: B<0> 0x2: B<1> 0x8: B<7> 0x9: C<4> 0xa: C<5> 0xb: pga_n<0> (PGA left-channel negative output) 0xc: pga_n<1> (PGA right-channel negative output)

Address	Mnemonic	Default value	Description
			Oxd: tempsensor_n (Temperature sensor negative output) Oxe: Ground Oxf: Ground
afe_0xea<7:4>	adc_ain_r_p	0000	Select positive input for right channel: 0x0: No input 0x1: B<0> 0x2: B<1> 0x8: B<7> 0x9: C<4> 0x9: C<4> 0xa: C<5> 0xb: pga_p<0> (PGA left-channel positive output) 0xc: pga_p<1> (PGA right-channel positive output) 0xd: tempsensor_p (Temperature sensor positive output) 0xe: rsvd
afe_0xeb<1:0>	adc_resl	11	Oxf: rsvd Set resolution for left channel Ox0: 8bits Ox1: 10bits Ox2: 12bits Ox3: 14bits
afe_0xeb<3:2>	RSVD		
afe_0xeb<5:4>	adc_resr	11	Set resolution for right channel 0x0: 8bits 0x1: 10bits 0x2: 12bits 0x3: 14bits
afe_0xeb<7:6>	RSVD		
afe_0xec<1:0>	adc_resm	11	Set resolution for Misc channel 0x0: 8bits 0x1: 10bits 0x2: 12bits 0x3: 14bits
afe_0xec<3:2>	RSVD		
afe_0xec<4>	adc_en_diffl	0	Select input mode for left channel. 0: rsvd 1: differential mode
afe_0xec<5>	adc_en_diffr	0	Select input mode for right channel. 0: rsvd 1: differential mode

Address	Mnemonic	Default value	Description
afe_0xec<6>	adc_en_diffm	0	Select input mode for Misc channel. 0: rsvd 1: differential mode
afe_0xec<7>	RSVD		
afe_0xed<3:0>	adc_tsampl	0000	Number of ADC clock cycles in sampling phase for left channel to stabilize the input before sampling: 0x0: 3 cycles 0x1: 6 cycles 0x2: 9 cycles 0x3: 12 cycles 0xf: 48 cycles
afe_0xed<7:4>	adc_tsampr	0000	Number of ADC clock cycles in sampling phase for right channel to stabilize the input before sampling: 0x0: 3 cycles 0x1: 6 cycles 0x2: 9 cycles 0x3: 12 cycles 0xf: 48 cycles
afe_0xee<3:0>	adc_tsampm	0000	Number of ADC clock cycles in sampling phase for Misc channel to stabilize the input before sampling: 0x0: 3 cycles 0x1: 6 cycles 0x2: 9 cycles 0x3: 12 cycles 0xf: 48 cycles
afe_0xef<7:0>	r_max_mc[7:0]		r_max_mc[9:0]serves to set length of "capture"
afe_0xf0<7:0>	r_max_c[7:0]		state for Misc channel.
afe_0xf1<3:0>	r_max_s		r_max_c[9:0] serves to set length of "capture"
afe_0xf1<5:4>	r_max_c[9:8]		state for left and right channel.
afe_0xf1<7:6>	r_max_mc[9:8]		 r_max_s serves to set length of "set" state for left, right and Misc channel. Note: State length indicates number of 24M clock cycles occupied by the state.
afe_0xf2<0>	r_en_left	0	Enable left channel. 1: enable
afe_0xf2<1>	r_en_right	0	Enable right channel. 1: enable
afe_0xf2<2>	r_en_misc		Enable Misc channel sampling. 1: enable
afe_0xf2<3>	rsvd	0	rsvd
afe_0xf2<6:4>	r_max_scnt	00	Set total length for sampling state machine (i.e. max state index)

Address	Mnemonic	Default value	Description
afe_0xf2<7>	rsvd		
afe_0xf3<7:0>	rsvd		
afe_0xf4<2:0>	adc_clk_div	011	ADC clock (derive from external 24M crystal) ADC clock frequency = 24M/(adc_clk_div+1)
afe_0xf4<7:3>	rsvd		
afe_0xf5<7:0>	rsvd		rsvd
afe_0xf6<7:0>	rsvd		rsvd
afe_0xf7<7:0>	adc_dat[7:0]		Read only, Misc adc dat[7:0]
afe_0xf8<7:0>	adc_dat[15:8]		Read only [7]: vld, ADC data valid status bit (This bit will be set as 1 at the end of capture state to indicate the ADC data is valid, and will be cleared when set state starts.) [6:0]: Misc adc_dat[14:8]
afe_0xf9<3:2>	rsvd	00	rsvd
afe_0xfa<7:6>	adc_sel_ai_scale	0	Analog input pre-scaling select sel_ai_scale[1:0]: scaling factor 0x0: 1 0x1: rsvd 0x2: rsvd 0x3: 1/8
afe_0xfc<4>	rsvd	0	rsvd
afe_0xfc<5>	adc_pd	1	Power down ADC 1: Power down 0: Power up

11 PGA

The TLSR8359 integrates a PGA (Programmable Gain Amplifier) module.

The PGA supports two channels including left channel and right channel, and each channel consists of Boost stage pre-amplifier and Gain stage post-amplifier.

By adjusting the gain of pre-amplifier and post-amplifier, the PGA can amplify differential analog input signals from specific pins before ADC sampling.

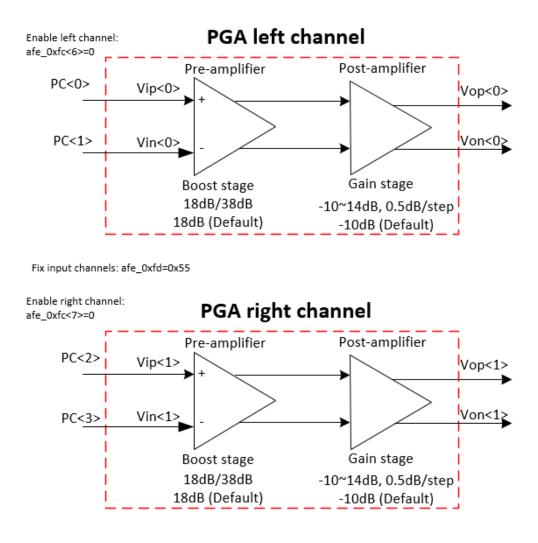


Figure 11-1 Block diagram of PGA

*Note:

Vip<0>, Vin<0>: Positive/Negative input of PGA left channel;

Vop<0>, Von<0>: Positive/Negative output of PGA left channel;

Vip<1>, Vin<1>: Positive/Negative input of PGA right channel;

Vop<1>, Von<1>: Positive/Negative output of PGA right channel.

11.1 Power on/down

Both PGA left channel and right channel are disabled by default.

To power on PGA left/right channel, the analog register pga_pd_l (afe_0xfc<6>) / pga_pd_r (afe_0xfc<7>) should be set as 1b'0.

11.2 Input channel

The analog register afe_0xfd must be set as 0x55, i.e. PGA input channel is fixed as $PC<0>^PC<3>$.

- ♦ PC<0>: positive input for PGA left channel.
- \diamond PC<1>: negative input for PGA left channel.
- ♦ PC<2>: positive input for PGA right channel.
- ♦ PC<3>: negative input for PGA right channel.

11.3 Adjust gain

Address 0xb63[7] should be set as 1b'1.

The PGA gain is directly adjustable via digital register 0xb63: Address 0xb63[6] serves to set gain for the pre-amplifier as 18dB (1b'0, default) or 38dB (1b'1); while address 0xb63[5:0] serves to set gain for the post-amplifier as -10dB (0x0, default) ~ 14dB (0x30) with step of 0.5dB. The total PGA gain should be the sum of the two gain values.

11.4 Register table

Address	Mnemonic	Default	Description
afe_0xfc<6>	pga_pd_l	1	Power down left channel PGA
_			1: Power down, 0: Power up
of Outor	ngo nd r	1	Power down right channel PGA
afe_0xfc<7>	pga_pd_r	T	1: Power down, 0: Power up
			Select left channel positive input source. Gate off all input with
			pga_pd_l.
			0x1: C<0>
afe_0xfd<1:0>	pga_sel_vin_l_p	00	0x0: No input
			0x2: No input
			0x3: No input
			Select left channel negative input source. Gate off all input with
	pga_sel_vin_l_n	00	pga_pd_l.
			0x1: C<1>
afe_0xfd<3:2>			0x0: No input
			0x2: No input
			0x3: No input
			Select right channel positive input source. Gate off all input with
		00	pga_pd_r.
			0x1: C<2>
afe_0xfd<5:4>	pga_sel_vin_r_p		0x0: No input
			0x2: No input
			0x3: No input
			Select right channel negative input source. Gate off all input
			with pga_pd_r.
ofo Ovfdz7:65	nga col vin r a	00	0x1: C<3>
afe_0xfd<7:6>	pga_sel_vin_r_n	00	0x0: No input
			0x2: No input
			0x3: No input

Table 11- 2 Digital register table related to PGA

Address	Mnemonic	Туре	Description	Reset value
0xb63	PGA_FIX_VALUE	RW	[6:0]: Pga gain fix value [7]: pga gain fix enable	0x80

12 Temperature Sensor

The TLSR8359 integrates a temperature sensor and it's used in combination with the SAR ADC to detect real-time temperature.

The temperature sensor is disabled by default. The analog register afe_0x07<4> should be set as 1b'0 to enable the temperature sensor.

Address	Name	Description	Default Value
		Power on/down temperature sensor:	
afe_0x07<4>	pd_temp_sensor_3V	0: Power up	1
		1: Power down	

Table 12- 1	Analog register for temperature sensor
-------------	--

The temperature sensor embeds two diodes. It takes the real-time temperature (T) as input, and outputs two-way forward voltage drop (V_{BE}) signals of diodes as positive and negative output respectively.

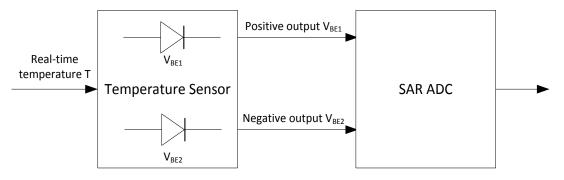


Figure 12-1 Block diagram of temperature sensor

The difference of the two-way V_{BE} signals (ΔV_{BE}) is determined by the real-time temperature T, as shown below:

$$\Delta V_{BE} = 130mV + 0.51mV/^{\circ}C * (T - (-40^{\circ}C))$$

= 130mV + 0.51mV/^{\circ}C * (T + 40^{\circ}C)

In this formula, "130mV" indicates the value of ΔV_{BE} at the temperature of "-40°C".

To detect the temperature, the positive and negative output of the temperature sensor should be enabled as the input channels of the SAR ADC. The ADC will convert the two-way V_{BE} signals into digital signal.

When the ADC is configured as differential mode, the positive and negative output of the temperature sensor should be configured as differential input of the ADC. The ADC should initiate one operation and obtain one output signal (ADCOUT), therefore,

$$\Delta V_{BE} = \frac{ADCOUT}{2^{N}-1} * V_{REF}.$$

DS-TLSR8359-E5

In the formula, "N" and " V_{REF} " indicate the selected resolution and reference voltage of the SAR ADC.

Then the real-time temperature T can be calculated according to the ΔV_{BE} .

111

13 Low Power Comparator

The TLSR8359 embeds a low power comparator. This comparator takes two inputs: input derived from external PortB (PB<1>~PB<7>), and reference input derived from internal reference, PB<0>, PB<3>, AVDD3 or float.

By comparing the input voltage multiplied by selected scaling coefficient with reference input voltage, the low power comparator will output high or low level accordingly.

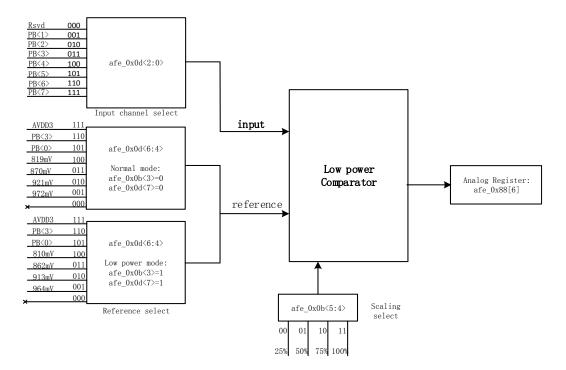


Figure 13-1 Block diagram of low power comparator

13.1 Power on/down

The low power comparator is powered down by default.

The analog register afe_0x07<3> serves to control power state of the low power comparator: By clearing this bit, this comparator will be powered on; by setting this bit to 1b'1, this comparator will be powered down.

To use the low power comparator, first set afe_0x07<3> as 1b'0, then the 32K RC clock source is enabled as the comparator clock.

13.2 Select input channel

Input channel is selectable from the PortB (PB<1>~PB<7>) via the analog register afe_0x0d<2:0>.

13.3 Select mode and input channel for reference

Generally, it's needed to clear both the afe_0x0b<3> and afe_0x0d<7> to select the normal mode. In normal mode, the internal reference is derived from UVLO and has higher accuracy, but current bias is larger (10uA); reference voltage input channel is selectable from internal reference of 972mV, 921mV, 870mV and 819mV, as well as PB<0>, PB<3>, AVDD3 and float.

To select the low power mode, both the afe_0x0b<3> and afe_0x0d<7> should be set as 1b'1. In low power mode, the internal reference is derived from Bandgap and has lower accuracy, but current bias is decreased to 50nA; reference voltage input channel is selectable from internal reference of 964mV, 913mV, 862mV and 810mV, as well as PB<0>, PB<3>, AVDD3 and float.

13.4 Select scaling coefficient

Equivalent reference voltage equals the selected reference input voltage divided by scaling coefficient.

The analog register afe_0x0b<5:4> serves to select one of the four scaling options: 25%, 50%, 75% and 100%.

13.5 Low power comparator output

The low power comparator output is determined by the comparison result of the value of [input voltage *scaling] and reference voltage input. The comparison principle is shown as below:

- ☆ If the value of [input voltage *scaling] is larger than reference voltage input, the output will be low ("0").
- If the value of [input voltage *scaling] is lower than reference voltage input, the output will be high ("1").
- ♦ If the value of [input voltage *scaling] equals reference voltage input, or input channel is selected as float, the output will be uncertain.

User can read the output of the low power comparator via the analog register afe_0x88[6].

The output of the low power comparator can be used as signal to wakeup system from low power modes.

13.6 Register table

Address	Name	Description	Default Value		
		Power on/down low power comparator:			
afe_0x07<3>	pd_lc_comp_3V	pd_lc_comp_3V 0: Power up			
		1: Power down			
		Reference mode select:			
afe_0x0b<3>	waf waarda aal	0: normal mode (current bias 10uA)	1		
	ref_mode_sel	1: low power mode (current bias 50nA)			
		See afe_0x0d<7>.			

Table 13-1 Analog register table related to low power comparator

Datasheet for Telink TLSR8359

Address	Name	Description	Default Value
		Reference voltage scaling:	
		00: 25%	
afe_0x0b<5:4>	comp_refscale<1:0>	01: 50%	01
		10: 75%	
		11: 100%	
		Input Channel select:	
		000: rsvd	
		001: B<1>	
		010: B<2>	
afe_0x0d<2:0>	comp_chsel<2:0>	011: B<3>	000
		100: B<4>	
		101: B<5>	
		110: B<6>	
		111: B<7>	
afe_0x0d<3>	vbus_inen	rsvd	0
		Reference select:	
		normal mode low power mode	
		000: Float 000: Float	
		001: 972mV 001: 964mV	
afe_0x0d<6:4>	comp_refesel<2:0>	010: 921mV 010: 913mV	000
-		011: 870mV 011: 862mV	
		100: 819mV 100: 810mV	
		101: B<0> 101: B<0>	
		110: B<3> 110: B<3>	
		111: AVDD3 111: AVDD3	
		Enable or disable 10uA current bias:	
afe_0x0d<7>	pd_l10u	0: Enable 10uA current bias	1
		1: Disable 10uA current bias	

14 AES

The TLSR8359 embeds AES module with encryption and decryption function. The input 128bit plaintext in combination of key is converted into the final output ciphertext via encryption; the 128bit ciphertext in combination of key can also be converted into 128bit plaintext via decryption.

The AES hardware accelerator provides automatic encryption and decryption. It only takes (1000*system clock cycles) to implement AES encryption/decryption. Suppose system clock is 20MHz, the time needed for AES encryption/decryption is 50us.

Both RISC mode and DMA mode are supported for AES operation.

14.1 RISC mode

For RISC mode, configuration of related registers is as follows:

- 1) Set the value of key via writing registers AES_KEY0~ AES_KEY15 (address 0x550~0x55f).
- 2) Set operation method of AES module via register AES_CTRL: set address 0x540[0] as 1b'1 for decryption method, while clear this bit for encryption method.
- For encryption method, write registers AES-DAT0~ AES-DAT3 (address 0x548~0x54b) for four times to set the 128bit plaintext. After encryption, the 128bit ciphertext can be obtained by reading address 0x548~0x54b for four times.
- 4) For decryption method, write registers AES-DAT0~ AES-DAT3 (address 0x548~0x54b) for four times to set the 128bit ciphertext. After decryption, the 128bit plaintext can be obtained by reading address 0x548~0x54b for four times.
- 5) Address 0x540 bit[1] and bit[2] are read only bits: bit[1] will be cleared automatically after quartic writing of address 0x548~0x54b; bit[2] will be set as 1 automatically after encryption/decryption, and then cleared automatically after quartic reading of address 0x548~0x54b.

14.2 DMA mode

As for DMA mode, it is only needed to configure the value of key and encryption/decryption method for AES module. Please refer to point 1) \sim 2) in section **14.1**.

14.3 AES-CCM

The AES-CCM (Counter with the CBC-MAC) mode is disabled by default. AES output is directly determined by current encryption and decryption, irrespective of previous encryption and decryption result.

If 0x540[7] is set as 1b'1 to enable AES-CCM mode, AES output will also take previous encryption and decryption result into consideration.

14.4 Register table

Address	Mnemonic	Туре	Description	Reset Value
			[0] Select decrypt/encrypt.	
			1: decrypt, 0: encrypt	
			[1] Read-only.	
			1: input data needed,	
0x540	AES_CTRL	R/W	0: input data ready.	0x02
			[2] Read-only.	
			0: output data not ready,	
			1: output data ready.	
			[7] 1: enable AES-CCM mode.	
0x548	AES-DAT0		Input/Output Data byte 0	0x00
0x549	AES-DAT1		Input/Output Data byte 1	0x00
0x54a	AES-DAT2		Input/Output Data byte 2	0x00
0x54b	AES-DAT3		Input/Output Data byte 3	0x00
0x550	AES_KEYO	R/W	[7:0] KEYO	0x00
0x551	AES_KEY1	R/W	[7:0] KEY1	0x00
0x552	AES_KEY2	R/W	[7:0] KEY2	0x00
0x553	AES_KEY3	R/W	[7:0] KEY3	0x00
0x554	AES_KEY4	R/W	[7:0] KEY4	0x00
0x555	AES_KEY5	R/W	[7:0] KEY5	0x00
0x556	AES_KEY6	R/W	[7:0] KEY6	0x00
0x557	AES_KEY7	R/W	[7:0] KEY7	0x00
0x558	AES_KEY8	R/W	[7:0] KEY8	0x00
0x559	AES_KEY9	R/W	[7:0] KEY9	0x00
0x55a	AES_KEY10	R/W	[7:0] KEY10	0x00
0x55b	AES_KEY11	R/W	[7:0] KEY11	0x00
0x55c	AES_KEY12	R/W	[7:0] KEY12	0x00
0x55d	AES_KEY13	R/W	[7:0] KEY13	0x00
0x55e	AES_KEY14	R/W	[7:0] KEY14	0x00
0x55f	AES_KEY15	R/W	[7:0] KEY15	0x00

Table 14- 1	Register table related to AES
-------------	-------------------------------

15 Key Electrical Specifications

Note: The electrical characteristics currently listed in this section are target specifications and only supplied for reference. Some data may be updated according to actual test results.

15.1 Absolute maximum ratings

Characteristics	Sym.	Min.	Max	Unit	Test Condition
Supply Voltage	VDD	-0.3	3.6	V	All AVDD, DVDD and VDD_IO pin must have the same voltage
Voltage on Input Pin	Vın	-0.3	VDD+ 0.3	V	
Output Voltage	V _{Out}	0	VDD	V	
Storage temperature Range	T _{Str}	-65	150	°C	
Soldering Temperature	Tsld		260	°C	

Table 15-1Absolute Maximum Ratings

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

15.2 Recommended operating condition

ltem	Sym.	Min	Тур.	Max	Unit	Condition
Power-supply voltage	VDD	1.8	3.3	3.6	V	All AVDD, DVDD and VDD_IO pin must have the same voltage
Supply rise time (from 1.6V to 1.8V)	t _R			10	ms	
Operating Temperature Range	Topr	-40		85	°C	

Table 15- 2Recommended operation condition

15.3 DC characteristics

ltem	Sym.	Min	Тур.	Max	Unit	Condition
RX current	I _{Rx}		5.3		mA	Whole Chip
TX current	I _{Tx}		4.8		mA	whole chip @ 0dBm with DCDC
Deep sleep with 8kB SRAM retention			1		uA	
Deep sleep with 16kB SRAM retention	I _{Deep1}		1.2		uA	
Deep sleep with 32kB SRAM retention			1.4		uA	
Deep sleep without SRAM retention	I _{Deep2}		0.4		uA	

Table 15- 3	DC characteristics (VDD=3.3V, T=25 $^{\circ}$ C)

15.4 AC characteristics

Table 15-4	AC Characteristics (VDD=3.3V, T=25 $^{\circ}$ C)
------------	--

Item	Sym.	Min	Тур.	Max	Unit	Condition
		Digital inp	uts/outpu	ts		
Input high voltage	VIH	0.7VDD		VDD	V	
Input low voltage	VIL	VSS		0.3VDD	V	
Output high voltage	VOH	0.9VDD		VDD	V	
Output low voltage	VOL	VSS		0.1VDD	V	
		USB char	acteristics	;		
USB Output Signal Cross-over Voltage	Vcrs	1.3	-	2.0	v	
		RF perf	ormance			
ltem		Min	Тур	Max	Unit	
RF frequency range		2380		2500	MHz	Programmable in 1MHz step
	2.4G Proprieta	ary 1Mbps, ±2	50kHz devi	ation	•	
Data rate	2.4G Proprieta	ary 2Mbps, ±50	00kHz devia	ation		
Dala fale	2.4G Proprieta	ary 500kbps, ±	125kHz dev	viation		
	2.4G Proprieta	ary 250kbps, ±	62.5kHz de	viation		
	1Mbps RF	_Rx performa	nce (±250	kHz deviati	on)	1
Sensitivity	1Mbps		-96		dBm	
Frequency Offset Tolerance		-250		+300	kHz	
Co-channel rejection			-11		dB	Wanted signal at - 67dBm

Datasheet for Telink TLSR8359

			1			for Telink TLSR8359
Item	Sym.	Min	Тур.	Max	Unit	Condition
	+1/-1 MHz		1/3		dB	
In-band blocking	offset		1/5		üb	
rejection	+2/-2 MHz		37/39		dB	Wanted signal at -
(Equal Modulation	offset		57755		üb	67dBm
Interference)	>=3MHz		42		dB	
	offset		72		ub	
Image rejection			37		dB	Wanted signal at - 67dBm
		1Mbps RF_T	c performa	ance		1
Output power,			10		dBm	
maximum setting			10		иып	
Output power,			45		dBm	
minimum setting			-45		авт	
Programmable output			FF		40	
power range			55		dB	
Modulation 20dB			2.5		N 41 1-	
bandwidth			2.5		MHz	
	2Mbps RF	_Rx performa	nce (±500	kHz deviati	on)	
Sensitivity	2Mbps		-93		dBm	
Frequency Offset						
Tolerance		-300		+200	kHz	
Co-channel rejection			-10		dB	Wanted signal at - 67dBm
	+2/-2 MHz		c lc		-10	
	offset		6/6		dB	
In-band blocking	+4/-4 MHz		20/20			Wanted signal at -
rejection	offset		39/38		dB	67dBm
	>4MHz		42		-ID	
	offset		42		dB	
Image rejection			25		dB	Wanted signal at - 67dBm
		2Mbps RF_T	, performa	ance		1
Output power,		• •				
maximum setting			10		dBm	
Output power,						
minimum setting			-45		dBm	
Programmable output						
power range			55		dB	
Modulation 20dB					1	
bandwidth			1.4		MHz	
RSSI						
RSSI range		-100		10	dBm	
Resolution			1		dB	

SEMICONDUCTOR				C	Datasheet	for Telink TLSR8359
Item	Sym.	Min	Тур.	Max	Unit	Condition
		24MF	Iz crystal			
Nominal frequency (parallel resonant)	f _{NOM}		24		MHz	
Frequency tolerance	f _{TOL}	-20		+20	ppm	
Load capacitance	CL	5	12	18	pF	Programmable on chip load cap
Equivalent series resistance	ESR		50	100	ohm	
		32.768	kHz crystal			
Nominal frequency (parallel resonant)	f _{NOM}		32.768		kHz	
Frequency tolerance	f _{TOL}	-100		+100	ppm	
Load capacitance	CL	6	9	12.5	pF	Programmable on chip load cap
Equivalent series resistance	ESR		50	80	kohm	
		24MHz F	RC oscillator			
Nominal frequency	f _{NOM}		24		MHz	
Frequency tolerance	f _{TOL}		1		%	On chip calibration
		32kHz R	C oscillator			
Nominal frequency	f _{NOM}		32		kHz	
Frequency tolerance	f_{TOL}		0.03		%	On chip calibration
Calibration time			3		ms	
			ADC			
Differential nonlinearity	DNL			1	LSB	10bit resolution mode
Integral nonlinearity	INL			2	LSB	10bit resolution mode
Signal-to-noise and distortion ratio	SINAD		70		dB	fin=1kHz, fS=16kHz
Effective Number of Bits	ENOB		10.5		bits	
Sampling frequency	Fs			200	ksps	

15.5 SPI characteristics

Table 15- 5SPI characteristics

Item	Sym.	Min	Тур.	Max	Unit	Condition
CK frequency	F _{ск}			4	MHz	Slave
CK duty cycle clock			50		%	Master
Di satun tima		30			ns	Slave
DI setup time		90			ns	Master
Di hald time		10			ns	Slave
DI hold time		90			ns	Master
CK low to DO valid				30	ns	Slave
time				120	ns	Master
CN setup time		60			ns	Master/Slave
CN high to DI tri- state ^{*3}					ns	Master

(over process, voltage 1.9~3.6V, and T=-40~+85 $^\circ \rm C$)

³ Note: Master actively stops reading during transmission, and Slave releases its driver DO and turns to tri-state.

Datasheet for Telink TLSR8359

15.6 I2C characteristics

Table 15-6 I2C characteristics

ltom	<u>Ci una</u>	Standa	rd mode	Fast m	ode	11	Condition
ltem	Sym.	Min	Max	Min	Max	Unit	Condition
SCL frequency	F _{SCL}		100		400	kHz	
Rise time of SDA and SCL signals	T _R		1000		300	ns	
Fall time of SDA and SCL signals	T _F		300		300	ns	
START condition hold time	T _{HD;STA}	4		0.6		us	
Data hold time	T _{HD;DAT}	0	3.45		0.9	us	
Data setup time	T _{SU;DAT}	250		100		ns	
STOP condition setup time	T _{SU;STO}	4		0.6		us	

122

(over process, voltage 1.9~3.6V, and T=-40~+85 $^\circ \! \mathbb{C}$)

Datasheet for Telink TLSR8359

15.7 Flash characteristics

		(T= -40	℃ ~85℃)			
ltem	Sym.	Min	Тур.	Max	Unit	Condition
Retention period		20			year	
Number of erase cycles		100k			cycle	
VDD for programming		1.65		2.0	V	Note this refers to the SoC supply
Sector size			4		kB	
Page programming time	T _{PP}		2	3	ms	
Sector erase time	T _{SE}		8	12	ms	
Block erase time (32kB/64kB)	T _{BE}		8	12	ms	
Program current	lρ		1.5	3.0	mA	
Erase current	IE		1.5	3.0	mA	

Table 15-7 Flash memory characteristics

16 Reference Design

16.1 Application example for TLSR8359ET48

16.1.1 Schematic

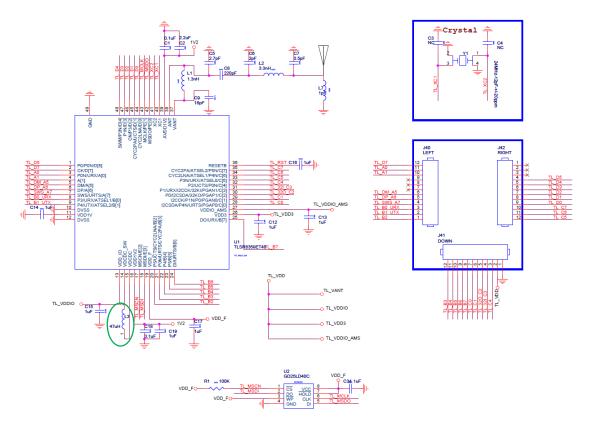


Figure 16-1 Schematic for TLSR8359ET48

*Note:

In the reference design, the L3 adopts 47uH inductor, which can ensure sensitivity index given in this Datasheet. User can also select 10uH or 6.8uH inductor instead as needed, but note that sensitivity will have 1~2dB or so difference.

16.1.2 BOM (Bill of Material)

Quantity	Reference	Part			
2	C1	0.1uF			
2	C18	0.1uF			
1	C2	2.2uF			
1	C5	2.7pF			
1	C6	2pF			
1	C7	0.5pF			
1	C8	220pF			
1	С9	18pF			
	C12	1uF			
	C13	1uF			
	C14	1uF			
8	C15	1uF			
0	C16	1uF			
	C17	1uF			
	C19	1uF			
	C34	1uF			
1	L1	1.3nH			
1	L2	3.3nH			
1	L3	47uH (alternative with 1~2dB sensitivity			
I	LS	difference: 10uH or 6.8uH)			
1	L7	1pF			
1	R1	100К			
1	U1	TLSR8359ET48			
1	U2	GD25LD40C			
1	Y1	24MHz_12pF_+/-20ppm			

Table 16-1 BOM table for TLSR8359ET48

16.2 Application example for TLSR8359F512ET32

16.2.1 Schematic

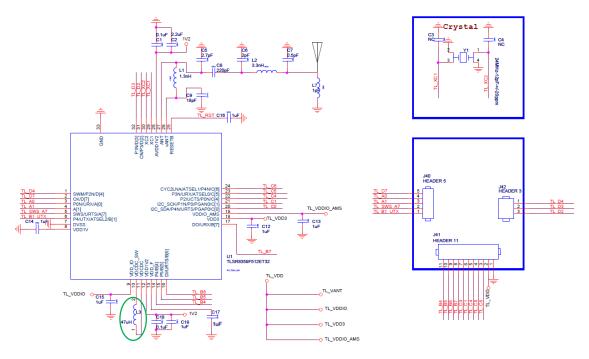


Figure 16-2 Schematic for TLSR8359F512ET32

*Note:

In the reference design, the L3 adopts 47uH inductor, which can ensure sensitivity index given in this Datasheet. User can also select 10uH or 6.8uH inductor instead as needed, but note that sensitivity will have 1~2dB or so difference.

16.2.2 BOM (Bill of Material)

Quantity	Reference	Part
-	C1	0.1uF
2	C18	0.1uF
1	C2	2.2uF
2	C3	NC
2	C4	NC
1	C5	2.7pF
1	C6	2pF
1	C7	0.5pF
1	C8	220pF
1	С9	18pF
	C12	1uF
	C13	1uF
	C14	1uF
7	C15	1uF
	C16	1uF
	C17	1uF
	C19	1uF
1	L1	1.3nH
1	L2	3.3nH
1	L3	47uH (alternative with 1~2dB
-	LJ	sensitivity difference: 10uH or 6.8uH)
1	L7	1pF
1	U1	TLSR8359F512ET32
1	Y1	24MHz_12pF_+/-20ppm

Table 16- 2 BOM table for TLSR8359F512ET32

16.3 Application example for TLSR8359F64ES16

16.3.1 Schematic

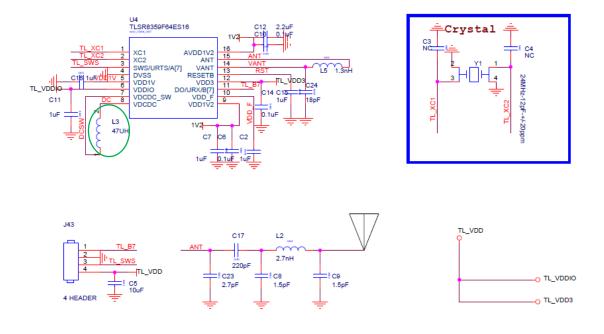


Figure 16-3 Schematic for TLSR8359F64ES16

*Note:

In the reference design, the L3 adopts 47uH inductor, which can ensure sensitivity index given in this Datasheet. User can also select 10uH or 6.8uH inductor instead as needed, but note that sensitivity will have 1~2dB or so difference.

16.3.2 BOM (Bill of Material)

Quantity	Reference	Part	Spec
	C2	1uF	0402
	C7	1uF	0402
5	C11	1uF	0402
	C15	1uF	0402
	C16	1uF	0402
1	C5	10uF	0603C
	C6	0.1uF	0402
3	C10	0.1uF	0402
	C14	0.1uF	0402
2	C8	1.5pF	0402
2	C9	1.5pF	0402
1	C12	2.2uF	0402
1	C17	220pF	0402
1	C23	2.7pF	0402
1	C24	18pF	0402
1	J43	4 HEADER	
1	L2	2.7nH	0402
1	L3	47uH (alternative with 1~2dB	0805L
-	sensitivity difference: 10uH or 6.8		
1	L5	1.3nH	0402
1	U4	TLSR8359F64ES16	TSSOP_16PIN_4P4X5_
			0P65
1	Y1	24MHz_12pF_+/-20ppm	OSCCC250X320X110

Table 16- 3 BOM table for TLSR8359F64ES16